不变曲线相关论文
本文考虑二维保积映射φ(x,y)→(x1,y1),其中f,g是x,y的实解析函数,且关于x是周期的,x∈T,|y| ≤ r,并且关于参数ξ是Cm光滑的.当......
本文中,我们主要研究的是临界有限有理函数的不变曲线的存在性问题。证明了对于某一类特殊的临界有限有理函数F,如果f∈F,则对充分......
动力系统就是要研究一个决定性系统的状态变量随时间变化的规律.根据系统变化的规律可分为由微分方程描述的连续动力系统和由映射......
经典的KAM定理认为在一定的非共振和非退化条件下,可积哈密顿系统的不变环面在小摄动下绝大多数可以保持下来,只不过稍微有些变形。......
本文中我们讨论了周期位势和相互作用凸势能作用下的一类非线性耦合振子系统的动力性态.通过寻找系统的凸不变区域,我们利用单调性证......
本文由两部分组成.第一部分讨论了变阻尼摆型方程∈χ+F(χ)χ+p(χ,t)=0,其中∈>0,f和p是光滑函数,而且关于χ是1-周期,关于t是T-周期,且......
迭代是自然科学乃至人类生活中的一种普遍现象。迭代函数方程理论是一个历史悠久、内容丰富、应用极其广泛的数学分支,漫长的历史沉......
非线性科学已经成为当今科学研究的一个热点,其中迭代动力系统扮演着十分重要的角色。动力系统就是要研究一个确定性系统的状态变量......
动力系统就是要研究一个决定性系统的状态变量随时间变化的规律.根据系统变化的规律可分为由微分方程描述的连续动力系统和由映射......
本论文中,我们主要考虑了两类微分方程的一些动力学性质.首先,讨论的是具有一类n+2次不变曲线解F(x,y)=x2(y+ax2+c)=0(ac≠0)的Kol......
本文主要研究一类空间及平面微分系统的定性分析及应用,我们知道对R3中的向量场的几何性质的分析是很困难的,在第一章我们建立了R3中......
通过构一个特定的结构,利用Schauder不动点定理、Banach不动点定理,紧凸子集的相关性质研究了一类非线性差分方程的不变曲线的存在......

