Frechet空间相关论文
微分包含又称为多值泛函微分方程,是非线性分析理论的一个重要分支.随着集值分析理论和微分包含理论的逐步完善,可控性和优化控制......
本文首先介绍了离散半群和连续半群的超循环性、弱混合性、拓扑混合性和频繁超循环性的概念、例子以及关于它们的基本结论。在单个......
使用在Fréchet空间中关于容许压缩集值映射的不动点定理给出了一类积分微分包含可控性的充分条件.......
本文讨论一类Fréchet空间F上的非线性集值微分方程初值问题解的收敛 性.基于Fréchet空间F上所有紧致凸子集构成的空间Kc(F)可视......
本文的研究分为二大部份,本文在第一部分给出了凸集映射的逆在拟范(quasi-norm)空间中是拟Lipschitz的充要条件,并运用此充要条......
Banach空间上抽象Cauchy问题及k-次积分抽象Cauchy问题有着非常重要的实际作用,许多物理问题都可模式化为它们;在理论上,有些微分......
本文通过改进Phelps的方法,利用Gerstewiz函数,在Frechet空间的框架下,给出了取值于局部凸偏序向量空间中的向量值函数的Ekelands变分......
本文主要研究了三类弱第一可数空间的性质和度量空间的严格可数双商映像.在第一部分,得到了严格Fréchet空间可刻画为映满它们的每......
主要讨论了Fréchet空间中一类半线性无穷时滞泛函微分发展方程在半无穷正实数区间上的可控性.利用Fréchet空间中Frigon和Granas......
本文主要讨论Fréchet空间上ε-等距线性算子的等距逼近问题, 证明了任意有限维Fréchet空间之间的等距逼近问题都是肯定的; 无穷......
主要讨论了抽象空间中非线性脉冲Volterra积分方程的Lploc解,并用Fréchet空间理论讨论了解集的结构。......
本文在局部凸空间的框架下,研究了一般线性算子(未必连续)存在连续左逆的条件,从而获得了Lax定理的一系列新的推广.......
讨论了一类半线性无穷时滞泛函微分发展包含在Fréchet空间中的可控性.利用Fréchet空间中Frigon的非线性选择定理并结合发展系统......
基于常微分方程解的存在定理,使用经典皮卡定理在局部凸空间中的推广,讨论了Fréchet空间中Cauchy问题解的存在唯一性,以及解对参......

