论文部分内容阅读
Large pressure equipment needs to be tested regularly to ensure safe operation;wall-climbing robots can carry the necessary tools to inspect spherical tanks,such as cameras and non-destructive testing equipment.However,a wall-climbing robot inside a spherical tank cannot be accurately positioned owing to the particularity of the spheri-cal tank structure.This paper proposes a passive support and positioning mechanism fixed in a spherical tank to improve the adsorption capacity and positioning accuracy of the inspection robot.The main body of the mechanism was designed as a truss composed of carbon fiber telescopic rods and can work in spherical tanks with diameters of 4.6-15.7 m.The structural strength,stiffness,and stability of the mechanism are analyzed via force and deformation simulations.By constructing a mathematical model of the support and positioning mechanism,the influence of struc-tural deformation on the supporting capacity is analyzed and calculated.The robot positioning method based on the support and positioning mechanism can effectively locate the robot inside a spherical tank.Experiments verified the support performance and robot positioning accuracy of the mechanism.This research proposes an auxiliary support and positioning mechanism for a detection robot inside a spherical tank,which can effectively improve the position-ing accuracy of the robot and meet the robotic inspection requirements.