论文部分内容阅读
Target tracking using wireless sensor networks requires efficient collaboration among sensors to tradeoff between energy consumption and tracking accuracy. This paper presents a collaborative target tracking approach in wireless sensor networks using the combination of maximum likelihood estimation and the Kalman filter. The cluster leader converts the received nonlinear distance measurements into linear observation model and approximates the covariance of the converted measurement noise using maximum likelihood estimation, then applies Kalman filter to recursively update the target state estimate using the converted measurements. Finally, a measure based on the Fisher information matrix of maximum likelihood estimation is used by the leader to select the most informative sensors as a new tracking cluster for further tracking. The advantages of the proposed collaborative tracking approach are demonstrated via simulation results.
Target tracking using wireless sensor networks require efficient collaboration among sensors to tradeoff between energy consumption and tracking accuracy. This paper presents a collaborative target tracking approach in wireless sensor networks using the combination of maximum likelihood estimation and the Kalman filter. The cluster leader could received nonlinear distance measurements into linear observation model and approximates the covariance of the converted measurement noise using maximum likelihood estimation, then applies Kalman filter to recursively update the target state estimate using the converted measurements. Finally, a measure based on the Fisher information matrix of maximum likelihood estimation is used by the leader to select the most informative sensors as a new tracking cluster for further tracking. The advantages of the proposed collaborative tracking approach are presented via simulation results.