论文部分内容阅读
利用偏序集上的半拓扑结构,引入了交C-连续偏序集概念,探讨了交C-连续偏序集的性质、刻画及与C-连续偏序集、拟C-连续偏序集等之间的关系.主要结果有:(1)交C-连续的格一定是分配格;(2)有界完备偏序集(简记为bc-poset)L是交C-连续的当且仅当对任意x∈L及非空Scott闭集S,当∨S存在时有x∧∨S=∨{x∧s:s∈S};(3)完备格是完备Heyting代数当且仅当它是交连续且交C-连续的;(4)有界完备偏序集是C-连续的当且仅当它是交C-连续且拟C-连续的;(5)获得了反例说明分配的完备格可