[!--title--]

来源 :数学教学通讯 | 被引量 : [!--cite_num--]次 | 上传用户:[!--user--]
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
[!--newstext--]
其他文献
In this paper,we prove the existence of positive solutions to the following weighted fractional system involving distinct weighted fractional Laplacians with gradient terms:{(-△)α/2α1u1(x) =uq111 (x) + uq122 (x) + h1(x,u1(x),u2(x),▽u1(x),▽u2(x)),x ∈ Ω,(-△
We prove the global existence and exponential decay of strong solutions to the three-dimensional nonhomogeneous asymmetric fluid equations with nonnegative density pro-vided that the initial total energy is suitably small.Note that although the system deg
The precise Lp norm of a class of Forelli-Rudin type operators on the Siegel upper half space is given in this paper.The main result not only implies the upper Lp norm estimate of the Bergman projection,but also implies the precise Lp norm of the Berezin
In this paper,we establish some oscillation criteria for higher order nonlinear delay dynamic equations of the form[rnψ(… r2(r1x△)△…)△]△(t) + h(t)f(x(τ(t))) =0 on an arbitrary time scale T with supT =∞,where n ≥ 2,ψ(u) =|u|γsgn(u) for γ > 0,ri(1 ≤ i ≤ n)
将差为一定值的两个数作为题中的一个条件,这种应用题被称为“年龄问题”.文章从网课教学中学生连麦不积极这个现状出发,深刻分析学生在解答“年龄问题”时遇到的障碍,谈谈在解决“年龄问题”时所用到的一些策略.
人类的进步、科技的发展离不开人才的培养,而创新思维是现代化人才必备的基本条件之一.文章认为创新思维的培养措施有:培养问题意识,启发创新思维;鼓励自主探究,激发创新思维;开展实践活动,诱导创新思维;利用变式教学,形成创新思维.
We investigate the uniform regularity and zero kinematic viscosity-magnetic dif-fusion limit for the incompressible viscous magnetohydrodynamic equations with the Navier boundary conditions on the velocity and perfectly conducting conditions on the magnet
Assume that X and Y are real Banach spaces with the same finite dimension.In this paper we show that if a standard coarse isometry f :X → Y satisfies an integral con-vergence condition or weak stability on a basis,then there exists a surjective linear iso
In this paper,we give some rigidity results for complete self-shrinking surfaces properly immersed in R4 under some assumptions regarding their Gauss images.More pre-cisely,we prove that this has to be a plane,provided that the images of either Gauss map
几何类比探究题的解析思路较为特殊,需要通过知识迁移、模型方法类比来突破,同时该类问题可按照一定的解题流程进行剖析,逐步从图形分析过渡到类比构建思路.文章将以一道几何类比探究题为例,探究解析过程,总结破题策略,并开展教学反思,提出相应的教学建议,与读者进行交流.