论文部分内容阅读
摘 要:知识经济时代教育的核心是培养人的创造性思维和创新能力。作为教师,要切实提供给学生创造的时空,给学生营造一种创新的环境,鼓励学生参与,让学生真正成为活动的策划者、组织者、实施者和评价者,使他们敢于探索、勇于创新、善于思考、激发兴趣,使求知的过程成为不断改造的过程,让学生在认识世界中发现问题、解决问题,获得“创造力”,成为创新型人才。
关键词:创新;激发;人才
中图分类号:G451 文献标识码:A
文章编号:1992-7711(2012)15-009-2
环视我们的周围,许多孩子恰恰缺乏对知识的自我发现、探索创新和亲身体验,缺乏探究的动机、兴趣和习惯。他们失去了自我,没有张开自己观察世界的慧眼,对某一问题的理解,如果老师没有说过,他们就束手无策。原因何在呢?请看这样一个故事:
外国的孩子和中国的孩子,都是在学习画苹果。
外国教师给每个学生一个苹果。孩子们摸摸、闻闻、看看、尝尝,兴奋极了。可是他们第一次画出来的苹果根本不像苹果,有的像梨,有的像桃……第二次渐渐有了点样子,到了第三次,他们终于完成自己的作品。孩子们画的苹果有的大,有的小,有的通红,有的青绿——因为他们得到的苹果各不相同。
中国教师一上课,就在黑板上画了一个大大的苹果,并仔细分析了它的形状,讲解了作画的步骤。结果中国孩子第一次就成功地完成了作品。他们画的苹果大小、形状甚至颜色都与黑板上的一模一样。
外国孩子三次才画好的苹果,中国孩子一次就完成了。
但是,外国孩子画的是自己的苹果,中国孩子画的是老师的苹果。这是中国孩子的悲哀,更是中国教育的悲哀。教师只注重对知识技巧的“分析”与“灌输”,忽视了孩子们情感的需求、个性的发展。在孩子心目中,只要老师说的就是对的,只有老师说的才是正确的。在这种教育模式的熏陶下,孩子们成了拷贝的高手,惟独没有独立思考的习惯、自由体验的要求。这样的学生所接受的知识,所形成的对世界的认识都是教师意志的影子。
沈阳有个以拾破烂为生的人,名叫王洪怀。有一天他忽发奇想:收一个易拉罐,才赚几分钱。如果将它熔化了,当金属材料卖,是否能多卖些钱?他于是把一个空罐剪碎,熔化成一块指甲大小的银灰色金属,然后花600元在市有色金属研究所做了化验,人家告诉他,这是一种很贵重的铝镁合金。他算了一笔帐:当时市场上的铝锭价格,每吨在1.4万元至1.8万元之间,每个空易拉罐重18.5克,5.4万个就是一吨。卖材料比卖废罐要多赚六七倍钱。于是他决定回收易拉罐熔炼。为了吸引人们交售空罐,他把回收价从每个几分钱提到一角四分,又将回收价以及指定收购点印在卡片上,向所有收破烂的同行散发。过了一周,王洪怀骑着自行车到指定地点一看,大吃一惊:很多货车在等待他,车上装的全是空易拉罐。这一天,他回收了13万多个,足足二吨半。王洪怀立即办了一个金属再生加工厂。就这样,他在一年内,用空易拉罐炼出了240多吨铝锭,3年赚了270万元,他也从一个“拾荒者”一跃成为百万富翁。这则事例给人以深刻的启示:向我们昭示了创新的力量。创新成就了以拾破烂为生的王洪怀;创新使他从一个“拾荒者”一跃成为百万富翁。
布鲁纳说:“探索是数学的生命线。”没有探索,便没有数学的发展。数学学习中最可贵的就是培养学生探索的意识和能力,探索可以说是知识创新的先导。为此,新课程标准要求教师应“依据学生的年龄特征和认知水平,设计有探索性和开放性的问题,给学生提供自主探索的机会”,引导学生“在实际情境中进行探索”,在探索学习过程中“逐步培养学生的创新意识,形成初步的探索和解决问题的能力”。
作为肩负新时期育人使命的教师,要培养学生的创新精神以及问题解决能力,首先是要让学生具有积极探索的态度,猜想和发现的欲望;要让学生有充分的实践体验的时间和空间,把活动的舞台还给学生,让学生在主动参与、主动探索、主动思考、主动实践的过程中经历自主探索、发现的精神生活;把活动的主动权让给学生,激发兴趣,人人参与,相互启发,做实践体验和创新活动的主人。
一、让学生在操作活动中探索创新
现代教学论主张要让学生动手做科学,而不是用耳朵听科学。动手操作的过程是知识学习的一种循序渐进的探究过程。通过动手操作,可以使学生获得丰富的感性知识,可以为学生创设一个活动、探索、思考的环境,使他们主动地参与知识的发现和形成的过程。那么课堂教学中教师要从“一切为了学生的发展”这个现代教育理念出发,努力创造一切条件,创设让学生参与操作活动的主、客观环境,为学生提供实践动手的机会,多让学生动手操作,多给学生一些自由空间,学生就会在“动”中感知,在“动”中领悟,在“动”中发挥创新的潜能。如教学“圆的周长和面积”时,我就放手让学生用自己喜欢的方法测量圆的周长,再根据每次测量的结果和直径作比较,这样学生通过动手实践、猜测验证、推理推导出圆周长的计算公式。又如在教学重量单位“克、千克”时,由于学生的感性认识较少,还不能完全理解1克和1千克到底是多少?两者又相差了多少?因此,在教学时我从学生比较熟悉的例子入手,准备了一枚2分硬币和一千克重的砂糖,让学生用手掂一掂,亲手感觉一下1克和1千克的重量。这种联系生活实际,使数学生活化的简单又有趣的操作,让学生轻松地掌握了知识。但在进行动手操作时还要注意:①要留给学生足够的思维空间。动手操作的目的在于使学生借助直观的活动来实现和反映其思维活动,所以教师必须给学生留有足够的思考空间。有的课堂,老师刚给出动手操作的内容和问题,大多数学生才进入角色,正处于一种欲罢不能的探究状态,老师就开始提问了,动手操作戛然而止,使原本活跃的课堂立刻冷落下来,动手操作成为一种过场、一种形式,多数学生毫无收获,所呈现和获取的知识还是出于课本或老师的口中。②操作活动要适量、适度。所谓适量,就是不要过于平凡,操作也不是多多益善。适度是指当学生的直观认识积累到一定的程度时,应该使学生在丰富的表象的基础上及时抽象,由直观水平向抽象水平转化。③动手操作是一种学习策略,是学习数学重要的方式之一,但不是唯一的。有的内容适合于动手操作,有的内容适合于独立思索,有的内容则适合于合作交流、教师演示等。因而教师要根据教材内容和学生的实际情况进行选择,要选择有一定价值的问题和内容进行动手操作,要靠近学生思维的“最近发展区”,让学生“跳一跳”能摘到“果子”。 二、让学生在问题情境中探索创新
学生学习的过程既是一个认知的过程,又是一个探索的过程,从某种意义上来说也是发现和再创造的过程。但探索和创新活动无疑需要问题的参与。由于探索总是与问题紧密地联系在一起的,问题既是探索的起点,又是探索的动力。因此,教师要有意识地创设问题情境,通过设疑激发学生思维的火花,从而引导学生在如何解决问题的思维下主动探究、获取知识、提高能力,这是培养学生创造性思维的积极而有效的途径。如我在教学“平行四边形的面积”时,首先说明平行四边形的面积计算公式产生的本身是人类智慧的产物,是人类创造的结晶。我非常注重研究和创造平行四边形的面积计算公式最初时期的情境,课始,我说:“同学们,你们可曾知道人类研究长方形的面积计算公式经历了近万年,而后来研究平行四边形的面积计算公式却仅用了几十年的时间!显然,人类是从长方形的面积计算公式中得到了很好的启示。”简单的几句话,道出了人类对这两个几何图形面积公式探究的历程。接着我说:“现在老师想请你们做一个古代数学家,想办法计算出这块平行四边形地的面积。”于是我在课堂上看到这些“古代数学家”拿着长方形、平行四边形的图形,摆弄着、切割着、拼凑着、组合着,他们边思考,边议论,大胆猜想,终于发现用长方形的面积计算公式可以计算平行四边形的面积了,学生边演示,边报告自己的发现,边提出其他相关的问题。在这其间学生得到的不仅是公式的理解和应用,其中还体现出创造的意识和探究的可贵精神。
三、让学生在讨论交流中探索创新
与人交流是未来每一个公民必须掌握的基本技能。现代社会在要求人们进行激烈竞争的同时,又需要人们进行广泛的多方面的合作交流,这就要求我们培养学生通过交流合作而达到解决问题的能力。讨论交流是一种开放式学习。在教学过程中,围绕某一知识进行广与泛的讨论和交流,让学生畅所欲言,并通过学生之间的相互合作,集思广益,逐步完善知识。例如我在教学“方程的意义”后,出了这样一道题:秣陵小学有68台电脑,秣陵中学有46台电脑,要使两所学校的电脑台数同样多,你有哪些方案?用方程表示。学生通过思考讨论出现了如下一些方案:秣陵中学再买X台,列式:46 X=68;秣陵小学送X台给秣陵中学,列式:46 X=68-X;秣陵小学捐给希望小学X台,列式:68-X=46;秣陵小学再买X台,秣陵中学再买Y台,列式:68 X=46 Y;……再如,在教学“质数和合数”时,我先出示了这样一组数:1、2、7、9、13、24、29、50、123,让学生分别写出它们的约数。然后,在小组里将这些数据的约数的个数进行分类。有的小组分成约数有1个和2个以上(含2个)两种情况,有的小组分成约数有1个、2个和2个以上三种情况,大家在小组中讨论热烈。经过老师的引导,一致同意将这些数据的约数的个数分成1个、2个和2个以上三种情况。在此基础上教师进一步引导学生思考讨论“约数只有一个的数,除了1以外,还有其他的数吗?”“约数有两个的,还有其他的数吗?”“约数有两个以上的还有其他的数吗?”这样一步步引导学生观察、比较、讨论、归纳,使学生牢固地掌握了质数和合数的相关知识。这种交流讨论的学习方法,不仅增强了师生间、学生间的多向信息交流,而且促使学生的思维火花产生碰撞,从而产生各种灵感,创新的各种方案就源源不断地出现,同时促使学生在探索规律中学会参与、学会合作、学会选择、学会创新。
四、让学生在开放性练习中探索创新
练习是加深理解基本概念,牢固掌握基础知识,形成基本技能,训练思维,培养能力,发展智力的必要途径。而开放性练习是指解题思路不一,能引起学生发散思维或条件不充分需要补充的一种练习。这样的练习需要学生通过思考找出一个或几个答案。开放性练习可以给学生提供更多的思考和探索的空间,使学生在解题时能够探索问题情境中的数量关系,寻找数学模型,使他们由模仿走向创新,有助于学生综合能力的培养。如我在教学“元、角、分”时,为了巩固“1角=10分”这个教学重点,创设了一个到“小商店”去用1分、2分和5分兑换1角货币的情境,比一比,看谁想的办法最多。学生很快地进入到“营业员”的角色,思维活跃,说出了很多种的答案。又如解答应用题:影剧院有一场音乐会,票价有60元和40元两种,其中60元的座位有250个;40元的座位有500个。这次音乐会的总收入是28000元。问观众可能有多少人?我先安排学生分组讨论,让学生之间就相关问题进行研讨,然后全班进行交流。有些同学想:假设全部卖完,60元的座位有250个,40元的座位有500个,票房总收入就应该是35000元。而现在实际收入是28000元,相差7000元,说明有一部分是空座。还有一些同学想:7000元票没有卖出去,究竟是哪种票少卖了?少卖了多少?有多少种可能性?在问题的探究中,学生获得了真正的答案。这样教师用心营造一种学习氛围,让每个学生都有充分表现自己的自信心,从而让学生以活泼、旺盛和高昂的精神状态去积极主动参与学习过程。
总之,我认为教师要积极创造条件,给学生营造一种创新的环境,撑起一片创新的天空,保护他们的好奇心,使他们敢于探索、勇于创新、善于思考,逐步形成创新的习惯,成为创新型人才。
关键词:创新;激发;人才
中图分类号:G451 文献标识码:A
文章编号:1992-7711(2012)15-009-2
环视我们的周围,许多孩子恰恰缺乏对知识的自我发现、探索创新和亲身体验,缺乏探究的动机、兴趣和习惯。他们失去了自我,没有张开自己观察世界的慧眼,对某一问题的理解,如果老师没有说过,他们就束手无策。原因何在呢?请看这样一个故事:
外国的孩子和中国的孩子,都是在学习画苹果。
外国教师给每个学生一个苹果。孩子们摸摸、闻闻、看看、尝尝,兴奋极了。可是他们第一次画出来的苹果根本不像苹果,有的像梨,有的像桃……第二次渐渐有了点样子,到了第三次,他们终于完成自己的作品。孩子们画的苹果有的大,有的小,有的通红,有的青绿——因为他们得到的苹果各不相同。
中国教师一上课,就在黑板上画了一个大大的苹果,并仔细分析了它的形状,讲解了作画的步骤。结果中国孩子第一次就成功地完成了作品。他们画的苹果大小、形状甚至颜色都与黑板上的一模一样。
外国孩子三次才画好的苹果,中国孩子一次就完成了。
但是,外国孩子画的是自己的苹果,中国孩子画的是老师的苹果。这是中国孩子的悲哀,更是中国教育的悲哀。教师只注重对知识技巧的“分析”与“灌输”,忽视了孩子们情感的需求、个性的发展。在孩子心目中,只要老师说的就是对的,只有老师说的才是正确的。在这种教育模式的熏陶下,孩子们成了拷贝的高手,惟独没有独立思考的习惯、自由体验的要求。这样的学生所接受的知识,所形成的对世界的认识都是教师意志的影子。
沈阳有个以拾破烂为生的人,名叫王洪怀。有一天他忽发奇想:收一个易拉罐,才赚几分钱。如果将它熔化了,当金属材料卖,是否能多卖些钱?他于是把一个空罐剪碎,熔化成一块指甲大小的银灰色金属,然后花600元在市有色金属研究所做了化验,人家告诉他,这是一种很贵重的铝镁合金。他算了一笔帐:当时市场上的铝锭价格,每吨在1.4万元至1.8万元之间,每个空易拉罐重18.5克,5.4万个就是一吨。卖材料比卖废罐要多赚六七倍钱。于是他决定回收易拉罐熔炼。为了吸引人们交售空罐,他把回收价从每个几分钱提到一角四分,又将回收价以及指定收购点印在卡片上,向所有收破烂的同行散发。过了一周,王洪怀骑着自行车到指定地点一看,大吃一惊:很多货车在等待他,车上装的全是空易拉罐。这一天,他回收了13万多个,足足二吨半。王洪怀立即办了一个金属再生加工厂。就这样,他在一年内,用空易拉罐炼出了240多吨铝锭,3年赚了270万元,他也从一个“拾荒者”一跃成为百万富翁。这则事例给人以深刻的启示:向我们昭示了创新的力量。创新成就了以拾破烂为生的王洪怀;创新使他从一个“拾荒者”一跃成为百万富翁。
布鲁纳说:“探索是数学的生命线。”没有探索,便没有数学的发展。数学学习中最可贵的就是培养学生探索的意识和能力,探索可以说是知识创新的先导。为此,新课程标准要求教师应“依据学生的年龄特征和认知水平,设计有探索性和开放性的问题,给学生提供自主探索的机会”,引导学生“在实际情境中进行探索”,在探索学习过程中“逐步培养学生的创新意识,形成初步的探索和解决问题的能力”。
作为肩负新时期育人使命的教师,要培养学生的创新精神以及问题解决能力,首先是要让学生具有积极探索的态度,猜想和发现的欲望;要让学生有充分的实践体验的时间和空间,把活动的舞台还给学生,让学生在主动参与、主动探索、主动思考、主动实践的过程中经历自主探索、发现的精神生活;把活动的主动权让给学生,激发兴趣,人人参与,相互启发,做实践体验和创新活动的主人。
一、让学生在操作活动中探索创新
现代教学论主张要让学生动手做科学,而不是用耳朵听科学。动手操作的过程是知识学习的一种循序渐进的探究过程。通过动手操作,可以使学生获得丰富的感性知识,可以为学生创设一个活动、探索、思考的环境,使他们主动地参与知识的发现和形成的过程。那么课堂教学中教师要从“一切为了学生的发展”这个现代教育理念出发,努力创造一切条件,创设让学生参与操作活动的主、客观环境,为学生提供实践动手的机会,多让学生动手操作,多给学生一些自由空间,学生就会在“动”中感知,在“动”中领悟,在“动”中发挥创新的潜能。如教学“圆的周长和面积”时,我就放手让学生用自己喜欢的方法测量圆的周长,再根据每次测量的结果和直径作比较,这样学生通过动手实践、猜测验证、推理推导出圆周长的计算公式。又如在教学重量单位“克、千克”时,由于学生的感性认识较少,还不能完全理解1克和1千克到底是多少?两者又相差了多少?因此,在教学时我从学生比较熟悉的例子入手,准备了一枚2分硬币和一千克重的砂糖,让学生用手掂一掂,亲手感觉一下1克和1千克的重量。这种联系生活实际,使数学生活化的简单又有趣的操作,让学生轻松地掌握了知识。但在进行动手操作时还要注意:①要留给学生足够的思维空间。动手操作的目的在于使学生借助直观的活动来实现和反映其思维活动,所以教师必须给学生留有足够的思考空间。有的课堂,老师刚给出动手操作的内容和问题,大多数学生才进入角色,正处于一种欲罢不能的探究状态,老师就开始提问了,动手操作戛然而止,使原本活跃的课堂立刻冷落下来,动手操作成为一种过场、一种形式,多数学生毫无收获,所呈现和获取的知识还是出于课本或老师的口中。②操作活动要适量、适度。所谓适量,就是不要过于平凡,操作也不是多多益善。适度是指当学生的直观认识积累到一定的程度时,应该使学生在丰富的表象的基础上及时抽象,由直观水平向抽象水平转化。③动手操作是一种学习策略,是学习数学重要的方式之一,但不是唯一的。有的内容适合于动手操作,有的内容适合于独立思索,有的内容则适合于合作交流、教师演示等。因而教师要根据教材内容和学生的实际情况进行选择,要选择有一定价值的问题和内容进行动手操作,要靠近学生思维的“最近发展区”,让学生“跳一跳”能摘到“果子”。 二、让学生在问题情境中探索创新
学生学习的过程既是一个认知的过程,又是一个探索的过程,从某种意义上来说也是发现和再创造的过程。但探索和创新活动无疑需要问题的参与。由于探索总是与问题紧密地联系在一起的,问题既是探索的起点,又是探索的动力。因此,教师要有意识地创设问题情境,通过设疑激发学生思维的火花,从而引导学生在如何解决问题的思维下主动探究、获取知识、提高能力,这是培养学生创造性思维的积极而有效的途径。如我在教学“平行四边形的面积”时,首先说明平行四边形的面积计算公式产生的本身是人类智慧的产物,是人类创造的结晶。我非常注重研究和创造平行四边形的面积计算公式最初时期的情境,课始,我说:“同学们,你们可曾知道人类研究长方形的面积计算公式经历了近万年,而后来研究平行四边形的面积计算公式却仅用了几十年的时间!显然,人类是从长方形的面积计算公式中得到了很好的启示。”简单的几句话,道出了人类对这两个几何图形面积公式探究的历程。接着我说:“现在老师想请你们做一个古代数学家,想办法计算出这块平行四边形地的面积。”于是我在课堂上看到这些“古代数学家”拿着长方形、平行四边形的图形,摆弄着、切割着、拼凑着、组合着,他们边思考,边议论,大胆猜想,终于发现用长方形的面积计算公式可以计算平行四边形的面积了,学生边演示,边报告自己的发现,边提出其他相关的问题。在这其间学生得到的不仅是公式的理解和应用,其中还体现出创造的意识和探究的可贵精神。
三、让学生在讨论交流中探索创新
与人交流是未来每一个公民必须掌握的基本技能。现代社会在要求人们进行激烈竞争的同时,又需要人们进行广泛的多方面的合作交流,这就要求我们培养学生通过交流合作而达到解决问题的能力。讨论交流是一种开放式学习。在教学过程中,围绕某一知识进行广与泛的讨论和交流,让学生畅所欲言,并通过学生之间的相互合作,集思广益,逐步完善知识。例如我在教学“方程的意义”后,出了这样一道题:秣陵小学有68台电脑,秣陵中学有46台电脑,要使两所学校的电脑台数同样多,你有哪些方案?用方程表示。学生通过思考讨论出现了如下一些方案:秣陵中学再买X台,列式:46 X=68;秣陵小学送X台给秣陵中学,列式:46 X=68-X;秣陵小学捐给希望小学X台,列式:68-X=46;秣陵小学再买X台,秣陵中学再买Y台,列式:68 X=46 Y;……再如,在教学“质数和合数”时,我先出示了这样一组数:1、2、7、9、13、24、29、50、123,让学生分别写出它们的约数。然后,在小组里将这些数据的约数的个数进行分类。有的小组分成约数有1个和2个以上(含2个)两种情况,有的小组分成约数有1个、2个和2个以上三种情况,大家在小组中讨论热烈。经过老师的引导,一致同意将这些数据的约数的个数分成1个、2个和2个以上三种情况。在此基础上教师进一步引导学生思考讨论“约数只有一个的数,除了1以外,还有其他的数吗?”“约数有两个的,还有其他的数吗?”“约数有两个以上的还有其他的数吗?”这样一步步引导学生观察、比较、讨论、归纳,使学生牢固地掌握了质数和合数的相关知识。这种交流讨论的学习方法,不仅增强了师生间、学生间的多向信息交流,而且促使学生的思维火花产生碰撞,从而产生各种灵感,创新的各种方案就源源不断地出现,同时促使学生在探索规律中学会参与、学会合作、学会选择、学会创新。
四、让学生在开放性练习中探索创新
练习是加深理解基本概念,牢固掌握基础知识,形成基本技能,训练思维,培养能力,发展智力的必要途径。而开放性练习是指解题思路不一,能引起学生发散思维或条件不充分需要补充的一种练习。这样的练习需要学生通过思考找出一个或几个答案。开放性练习可以给学生提供更多的思考和探索的空间,使学生在解题时能够探索问题情境中的数量关系,寻找数学模型,使他们由模仿走向创新,有助于学生综合能力的培养。如我在教学“元、角、分”时,为了巩固“1角=10分”这个教学重点,创设了一个到“小商店”去用1分、2分和5分兑换1角货币的情境,比一比,看谁想的办法最多。学生很快地进入到“营业员”的角色,思维活跃,说出了很多种的答案。又如解答应用题:影剧院有一场音乐会,票价有60元和40元两种,其中60元的座位有250个;40元的座位有500个。这次音乐会的总收入是28000元。问观众可能有多少人?我先安排学生分组讨论,让学生之间就相关问题进行研讨,然后全班进行交流。有些同学想:假设全部卖完,60元的座位有250个,40元的座位有500个,票房总收入就应该是35000元。而现在实际收入是28000元,相差7000元,说明有一部分是空座。还有一些同学想:7000元票没有卖出去,究竟是哪种票少卖了?少卖了多少?有多少种可能性?在问题的探究中,学生获得了真正的答案。这样教师用心营造一种学习氛围,让每个学生都有充分表现自己的自信心,从而让学生以活泼、旺盛和高昂的精神状态去积极主动参与学习过程。
总之,我认为教师要积极创造条件,给学生营造一种创新的环境,撑起一片创新的天空,保护他们的好奇心,使他们敢于探索、勇于创新、善于思考,逐步形成创新的习惯,成为创新型人才。