论文部分内容阅读
晶格缺陷不仅是材料中不可避免的结构单元,更是影响材料性能重要的,甚至决定性的因素.相对于周期性的晶体结构,晶格缺陷的原子构型由大量原子的坐标决定,这给实验测量带来很大困难.对计算材料学而言,多参数的全局优化也是一个经典的难题.计算设计所得的结构与其相应的性能是否能实现,需要实验验证.本文以近期对氧化物表面的研究工作为例,介绍了像差校正电子显微学与第一原理计算相结合在分析晶格缺陷的原子结构方面的重要作用.通过定量高分辨电子显微镜实验在亚埃分辨对缺陷的原子构型进行皮米精度的测量,并运用第一原理计算在原子尺度研究材料的电子结构与动态行为.二者相辅相成,从时间与空间两个尺度都能加深对材料的原子结构的理解和认识,推进原子层次的材料设计.
Lattice defects are not only the unavoidable structural elements in the material, but also the important and even decisive factors that affect the material properties.Compared with the periodic crystal structure, the atomic configuration of lattice defects is determined by the coordinates of a large number of atoms, which gives The experimental measurement brings great difficulties.For computational materials science, the global optimization of multi-parameters is also a classic problem.Calculation of the design of the structure and its corresponding performance can be achieved, the need for experimental verification.In this paper, the recent oxide surface As an example, introduces the important role of aberration correction electron microscopy combined with the first principle calculation in the analysis of the atomic structure of lattice defects.According to the quantitative high-resolution electron microscopy experiment, Configuration of the measurement of the accuracy of the Pimi, and the use of first principles to calculate the electronic structure and dynamic behavior of the material at the atomic scale. The two complement each other, both from time and space to deepen the understanding of the atomic structure of the material and understanding , Promote atomic material design.