浅析高中数学教学中培养学生的创新能力实施策略

来源 :速读·下旬 | 被引量 : 0次 | 上传用户:coconutt
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  摘 要:数学学科是培养学生创新能力最合适的学科,因此在高中数学教学过程中,教师要采用科学有效的方法,激发学生的创新意识,形成创新个性,培养学生的创新能力。
  关键词:创新能力;建模
  时代发展需要创新人才,对创新人才的培养是教育的首要任务,在基础教育中,数学是思维的体操,培养学生的创新思维、创新能力有着其他学科无法替代的优势,因此在高中数学教学过程中,教师要采用科学有效的方法,激发学生的创新意识,形成创新个性,培养学生的创新能力
  一、创设良好的“提出问题”的氛围,培养问题意识
  没有问题,就无所谓创新,发现问题,提出问题是创新能力的基础。在数学教学中要培养学生的创新能力,首先要通过创设良好的问题氛围,鼓励学生大胆猜测、大胆质疑,不唯师、不唯书,激发学生的学习兴趣,培养学生的问题意识;其次要从不同方向引导学生发现问题,提出问题,正确对待学生的“奇思妙想”,培养学生的创新意识
  高中学生对数学知识的获得大多表现在记忆和解题上,缺乏对知识间的联系和分析,被动接受的多,主动反思的少。如我在讲授《数学归纳法》一课时,有意设计了下面三个问题。问题1:今天,据观察第一个到学校的是男同学,第二个到学校的也是男同学,第三个到学校的还是男同学,于是,我得出:这所学校里的学生都是男同学。(学生:窃窃私语,哄堂大笑——以偏概全)。问题2:数列{an}的通项公式为an=(n2-5n+5)2,计算得a1=1,a2=1,a3=1,可以猜出数列{an}的通项公式为:an=1(此时,绝大部分学生不作声——默认,有一学生突然说:当n=5时,an=25,a5≠1,这时一位平时非常谨慎的女生说:“老师今天你第二次说错了”)。问题3:三角形的内角和为180°,四边形的内角和为2*180°,五边形的内角和为3*180°,……,显然有:凸n边形的内角和为(n-2)*180°。(说到这里,我说:“这次老师没有讲错吧?”)上述三个问题思维方式都是从特殊到一般,问题1、2得到的结论是错的,那么问题3是否也错误?为什么?(学生茫然,不敢质疑)。合理地利用材料,提出好的问题,引出课题,揭示了本节知识的必要性。通过让学生自主参与知识产生、形成的过程,获得亲身体验,逐步形成一种在日常学习与生活中爱置疑、乐探究的心理倾向,激发探索和创新的积极欲望。不仅使学生理解了归纳法,而且掌握了分析、判断、研究一般问题的方法。
  高中学生的数学创新能力主要表现在:①在解题上提出新颖,简洁,独特方法。②运用类比的方法对某些结论进行推广和延伸,获的更一般的结论。如某年度高考题:“在等差数列{an}中,若a10=0,则有等式a1+a2+……an=a1+a2+……+a19-n(n<19,n∈n=成立。类比上述性质,相应地:在等比数列{bn}中,若b9=1,则有等式______成立”。用有关等差数列和等比数列概念和类比的方法,辩明等差数列和式两边元素下标的关系;运用类比的手段,将已知等差数列的性质拓展到等比数列的性质,无疑发现了解决上述问题的通道,这是一个创新的过程。类比的结论不一定都正确,对问题的质疑比单一的解题,其效果是不一样的,如在等差数列{an}中,sm=a1+a2+……+am,则sm,s2m-sm,s3m-s2m成等差数列,能否类比到等比数列{bn}中,sm,s2m-sm,s3m-s2m成也等比数列,许多学生可能会证明它是正确,但这结论恰恰是错误的(当a1=2,公比q=-1时,s2=s4-s2=s6-s4=0)。再如,某年高考题:设f(x)为定义在r上的偶函数,当x≤-1时,y=f(x)的图象是经过点(-2,0),斜率为1的射线。又在y=f(x)的图象中有一部分是顶点在(0,2),且过(-1,1)的一段抛物线,试写出f(x)的表达式,并作出图象。高考结束以后就有学生问:抛物线是否仅二次函数的图象?如果不是,那么它的解不唯一。③通过对问题的变式引出新的问题进行探索。譬如,在求数列an=2n-1的前n项和时。可以引出数列{a3n}和{α3n}的前n项和,让学生进行充分的讨论,前一问题仍是等差数列的前n项和,但首项、公差都已经变化,认知上没有冲突,学生是可以解决的;后一问题如果学生不深入研究数列的通项公式,那么他就无法求此数列的前n项和.探究等差数列相关知识,对学生而言应是创新性思维;如果再将产生的结论向等比数列联想,可使这种创新思维得到延伸,达到不断激发学生创新欲望之目的。
  二、加强数学知识和实际联系,增强建模意识,培养创新能力
  数学与人们的生活和生产有着密切的联系,教师在教学过程中根据学生实际有意识的把数学知识和生活、生产中的实际问题联系起来,培养学生对不同的问题建立不同的数学模型的意识,不但有利于学生参与社会实践、服务社会,还培养了学生的创新意识。如某年度上海春季高考第22题是有关工资问题,可以建立等差、等比数列的数学模型。这些问题都有各自的实际背景,要解决这些问题,除了要熟悉有关的实际背景,更关键的是要通过审题、分析建立相应的数学模型,利用已有的数学知识、数学思想方法、计算工具来解决相关的实际问题,体验数学模型化的价值,同时培养了学生实践和创新能力。数学来源社会实践,又服务于社会实践,创新能力型问题很多,要求有高有低,我们不能要求学生一一掌握,但让他们知道这些问题共同的特点,探求问题解决的一般方法。高中数学中创新方法可以归纳为以下几类:从特殊到一般、从一般到特殊、联想与类比、建模、化归与转化、引申与拓展等。在数学教学中,教师要特别注意培养学生根据题中具体条件,自觉、灵活地运用数学思想方法,根据不同的类型探索出一般的规律;在教学过程中,通过变换不同思考角度,就可以发现新方法、新问题,制定新策略、解决新问题。
  数学学科是培养学生创新能力最合适的学科,创新能力的培养是一个日积月累的长期工程,因此对高中学生数学创新能力的培养贯穿于整个数学课堂教学过程中,要不失时机地让学生进行类比、推广、探究、质疑,培养学生的数学创新能力、发展学生的一般能力,为终身学习打下扎实的基础。
其他文献
期刊
随着我国离婚率的高涨以及离异妇女人群的连年攀升,大多女性离婚后生活陷入困境,使离异妇女贫困化逐渐演变成为一个社会问题。虽然造成离婚妇女贫困化的原因很多,但现行法律
期刊
一、建筑工艺典籍在史前社会,青藏高原就出现了建筑艺术。西藏卡若新石器时代遗址,就有丰富的建筑遗存,有圆形房、半地穴房和地面房、双室房屋等。到了建造拉萨泽塘的雍布拉
摘 要: 有效的教学管理工作对当前我国高职院校的有效管理具有积极作用和意义。目前,随着我国教育教学工作的不断开展,高职教育获得长足发展和进步,在人才培养方面作出了积极贡献。近年来,随着我国高等院校的不断扩招,高职院校的学生人数呈现出不断上升的趋势,实现高职院校教育教学工作的有效管理,对提高教学质量,培养学生先进的学习理念具有至关重要的作用。本文从高职教学管理体系的现状及存在的主要问题方面进行论述和
随着互联网技术的发展,网络经济成为新的经济发展特征,网络经济成为社会经济发展的重要推动力量.会计本身就是经济发展过程中的产物,网络经济的发展,给社会经济造成一定的影
高等院校对于学生的健美操教程,尤为注重综合素质的培养,这现在已经成为健美操改革的发展趋势。作为医学院校的学生,背负着白衣天使的重大使命。当面对庞大的社会压力与挑战
一、声乐钢琴伴奏与声乐教学的关系1.声乐钢琴伴奏的定义与内容伴奏,指的是“歌曲或器乐曲的有机组成部分之一,由一件或多件乐器奏出,用以衬托主要的歌唱或器乐演奏部分。”
数码产品,IT 业中更新速度最快的群体之一。虽然我们头脑中能想到不少词汇,如日新月异、变化万千来形容这更新的速度之快,可总还是有那么一点点欠缺—因为数码产品更新的速度实在是太快了,一款款新产品就如流星一般在我们眼前飞速闪过,真正能给我们留下深刻印象的真的不多,特别是消费类电子发展最快的这1 0年。也正是因为如此,我们精选出来的这十款产品,称得上是10 年中最为不老的传说。
期刊
教师的责任就是点燃火把,让他燃烧,教师不应做学生思维的保姆,而要知识成为学生自己思考的果实。  一、创设自主探究的氛围,让课堂充满乐趣  传统的语文教学囿于学科的本位,淡薄了学生的能动性和生长潜力,学生的自我意识常常处于抑制状态。其实,孩子是金子,本就闪烁着光芒。我们要把个体生命发展的主动权还给他们,充分开掘他们自身的智慧,为课堂有限时空注入无限张力,为他们创设自主探究的氛围。让自由宽松的语文课堂
明确了配网自动化和传统箱变特点及技术现状,在此基础上,针对传统箱变特点,通过对箱变一次设备和二次设备的改造初步实现远程监视箱变运行参数及开关的远程控制,最后对改造后
期刊