论文部分内容阅读
最近,一种4结点膜单元AGQ6-I已经被成功地用来分析线性平板问题。由于这种模型是由四边形面积坐标法(QACM)构建的,QACM是一种用于研究四边形有限元模型的新自然坐标系统,因此模型比其他4结点等参单元对网格畸变的敏感度要小得多,它也避免了各种由于几何网格不规则性产生的相关问题。为了将QACM的这些优点应用到非线性应用软件上,本文建立了AGQ6-I的完全拉格朗日公式,这也是平面QACM理论第一次被应用于模糊几何非线性分析。几何非线性分析的数例表明,此公式能保证应用于严重畸变网格的有效性,因此QACM优于其他的4结点等参单元。分析结果表明:在几何非线性分析中,QACM对于开发简单有效及可信赖的板膜单元是非常有效的。
Recently, a 4-junction membrane cell, AGQ6-I, has been successfully used to analyze linear plate issues. Since this model is constructed by the Quadrilateral Area Coordinate Method (QACM), QACM is a new natural coordinate system for studying quadrilateral finite element models. Therefore, the model is more sensitive to grid distortion than other 4-node isoparametric elements Much smaller, it also avoids a variety of related problems due to geometric grid irregularities. In order to apply these advantages of QACM to nonlinear applications, a complete Lagrange formula of AGQ6-I is established in this paper. This is the first time that planar QACM theory has been applied to fuzzy geometric nonlinear analysis. A few examples of geometric nonlinear analysis show that this formula guarantees the validity of applying to severe distortion grids, so QACM outperforms other 4-node isoparametric elements. The analysis results show that QACM is very effective for the development of simple, effective and reliable plate membrane units in geometric nonlinear analysis.