论文部分内容阅读
The rapid solidification of Sb60Ag20Cu20 ternary alloy was realized by high under- cooling method, and the maximum undercooling is up to 142 K (0.18TL). Within the wide undercooling range of 40-142 K, the solidified microstructures are composed of (Sb), θ and ε phases. High undercooling enlarges the solute solubility of (Sb) phase, which causes its crystal lattice to expand and its crystal lattice constants to increase. Primary (Sb) phase grows in two modes: at small undercoolings non-faceted dendrite growth is the main growth form; whereas at large undercool- ings faceted dendrite growth takes the dominant place. The remarkable difference of crystal structures between (Sb) and θ phases leads to (θ + Sb) pseudobinary eutectic hard to form, whereas strips of θ form when the alloy melt reaches the (θ + Sb) pseudobinary eutectic line. The cooperative growth of θ and ε phases contrib- utes to the formation of (ε + θ ) pseudobinary eutectic easily. In addition, the crys- tallization route has been determined via microstructural characteristic analysis and DSC experiment.
The rapid solidification of Sb60Ag20Cu20 ternary alloy was realized by high under-cooling method, and the maximum undercooling is up to 142 K (0.18TL). Within the wide undercooling range of 40-142 K, the solidified microstructures are composed of (Sb) (Sb) phase grows in two modes: at small undercoolings non-faceted dendrite while is at large undercool- ings faceted dendrite growth takes the dominant place. The remarkable difference of crystal structures between (Sb) and θ phases leads to (θ + Sb) pseudobinary eutectic hard to form, θ form when the alloy melt reaches the (θ + Sb) pseudobinary eutectic line. The cooperative growth of θ and ε phases contrib- utes to the formation of (ε + θ) pseudobinary eutectic easily. In addition, the crys-tallizati on route has been determined via microstructural characteristic analysis and DSC experiment.