初中数学课堂教学“开场白”方法浅议

来源 :心事·教育策划与管理 | 被引量 : 0次 | 上传用户:hainian3166
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  新课导入环节是课堂教学的先导,它是整个课堂教学的开场白。“良好的开端是成功的一半”,开场白的设计是教学艺术的重要方面,它熔铸了教师的智慧,凝聚了教师的教学风格,甚至学识修养。开场白方法多种多样,可由简单的导语引入,也可由问题引入、实例引入等等。但不管用什么方法,都必须明确教学目标,提高学生学习积极性,确保教学活动的有效性。因此,重视初中数学课堂教学开场白的设计,对于提升课堂教学的有效性起着很重要的作用。本人在教学实践中就如何设计好数学课堂教学“开场白”的方法,进行了多年的探究,下面仅从几方面谈谈我的一些做法。
  激趣法
  在教学中,我们都有这样的体会,课堂上提到课本外的故事或活动,学生都会对这些内容特别感兴趣,听课的积极性往往都很高。俗话说:“兴趣是最好的老师”,因此根据初中生的年龄特点,课堂上适当穿插与教材内容相关的故事或实例,既能活跃课堂气氛,同时又能吸引学生的注意力,提高教学效果。
  例如,我在教学《有理数的乘方》这节内容时,采用了以下的实例作为课堂教学的开场白:
  同学们,一张白纸的厚度大约为0.1mm,请你们把一张白纸对折10次,量一量这叠白纸大概有多厚?在学生实践操作得出大概结果后,教师再发问,若将这一张白纸折叠30次呢?它将有多厚?在学生们做出种种猜测后,教师再告诉大家,其厚度即0.1X230mm远远超过珠穆朗玛峰的高度。为什么呢?在学习“有理数的乘方”后你们就就明白了。
  用这种开场白导入新课,能活跃课堂气氛,也能拉近师生之间的距离,让学生在愉快中学到知识,并体验了学习的乐趣。
  策
  复习法
  课堂教学中,时常要“瞻前顾后”,对教学有关的旧知识进行充分地整理、复习,为学习新知识铺平道路,起到以旧带新,讲新温故的作用。数学教学中的概念多,前后知识衔接紧密,若在复习或利用旧知识时,做到新旧过渡,使学生对新知识、新问题不觉其新,“似曾相识”,那么新课的导入也就水到渠成了。
  例如在学习因式分解法解一元二次方程时,可通过与学生一起复习因式分解的方法并配以相应的习题:
  因式分解:
  (1)x2- x (2)x2-2x+1 (3) x2-x-6
  先让学生说一说上述各题因式分解的结果:x(x-1),(x-1)2,(x-3)(x+2) 。接着提出问题:能否直接说出下列方程的解?
  X(x-1)=0,(x-1)2=0,(x-3)(x+2)=0
  通过这样的复习导入,让学生知道通过因式分解也能求一元二次方程的解。这就为学生学习新知识——因式分解法解一元二次方程做出了有效的铺垫,使新课的教学得以过渡。
  运用复习法首先要找准新旧知识的结合点,所引入的复习内容必须为学习新知识作好铺垫,并起到很好的过渡作用。
  策
  紧扣教学内容,有目的、有针对性地设计一些练习问题,让学生在练习过程中,将方法思维迁移到新知识上,从而实现新知识的学习,这便是练习导入的目的及意义。
  如在教学分式方程的解法这节内容时,我设计了以下的一道练习题作为本节课的开场白。
  解下列整式方程,并说说它的解题步骤:
  x
  通过前面整式方程的练习,学生会自然而然地按照前面的思维方法去求后一题方程的解,但分母不同了,怎办呢?老师据此顺势导入新课题——分式方程的解法。
  运用练习法导入新课应本着少而精的原则,将切合与新授课的重点、难点有密切联系的练习精选出来,为新知识的学习
  设疑法
  遇疑质疑是一种学习心理机制,是学生对所学对象感到疑惑不解产生疑问而想解决疑问的一种心理状态,它能激发学生的学习动机和兴趣。在课堂教学切入新课之前,教师有意识的设置一些疑问,使学生产生质疑的心理,激发求知的欲望,可为进一步学习新课埋下伏笔。
  例如,在教学“多边形相似的判定”时,一开始我就问:只要三个角对应相等或三边对应成比例,就可以判定两个三角形相似,是不是只要对应角相等或对应边成比例就可以判定两个多边形相似呢?大部分学生会凭直觉不假思索地回答:可以。而我却很肯定地回应他们:很遗憾,你们错了。这时学生们一脸的疑惑——为什么?这样就诱发学生产生好奇、怀疑、急于想知道为什么的心理。这个时候,教师若能抓住时机,及时转入正题,往往能收到事半功倍的教学效果。
  又如,我在教学“十字相乘法”分解因式时,先出示题目,分解因式:
  ①2x2-6x ②3x3-6x2+3x ③x2+5x+6
  学生用已学过的提公因式法和公式法很快就把前两题分解结束了,而做第三题却碰了钉子——不能提公因式,也不能用公式分解,用老办法不灵了,怎么办?那就需要探求新的方法——十字相乘法分解因式,老师适时引入课题,这样的开场白使学往带着疑问和任务,变“要我学”为“我要学”。
  运用设疑作为开场白,应注意疑问的设置要从学生的实际出发,恰当适度。不“悬”不“疑”,学生不思已解,难以激发学习兴趣;太“悬”太“疑”,学生百思不解,也会降低学习兴趣。因此要求教师在设置悬念疑问时要吃透教材,了解学生的“底”。这样能够调动学生学习的积极性,思维也能被激活。当问题解决之后,他们的心理得到满足,产生了成就感和自豪感,增加了学习的自信心。
  策
  类比法
  鉴于数学知识有较强的系统性和衔接性,适当地运用类比的方法,有助于启迪思维,唤起学生的回忆,帮助他们寻找新问题的方法思路,启发他们去联想,从而在旧知识的基础上,借助于其它的方法解决新问题。
  例如学习分式的约分可类比分数的约分作为“开场白”引入新课:
  观察下列分数的约分过程:
  开门见山法
  开门见山,直接导入是教师导入新课的常用方法之一,适用在某些概念的教学中。有些数学知识比较简单,学生也不难接受,不必拐弯抹角,可直接揭示课题,迅速把学生的思维引向所要探索的问题上,让学生依照教师的导向去观察、去思考。
  例如,讲“平行四边形”的概念时,可直接给出课题:平行四边形——两组对边分别平行的四边形。
  再如,学习“圆心角“也可给出:圆心角——顶点在圆心,两边与圆相交的角。
  策
  发现法
  知识和经验的积累,往往是在实践过程中经过观察、分析、综合、比较、总结和归纳等一系列的积极思维活动而逐渐发现和得到的。因此,在讲授新课前,通过一些练习和实践,引导学生观察、比较、分析,发现规律,课题会随着被揭露出来。
  如在教学《有理数的除法运算》这节内容时,我设计了以下的练习题作为本节课的开场白:
  ∵4×(-2)=-8
  ∴-8÷4=( ) (-8)÷ (-2)= ( )
  又∵(-8)× 2 )
  老师指导完成填空之后,引导学生观察、比较、分析并提问:你发现什么规律了没有?(除以一个数等于乘以这个数的倒数),从而揭示课题,引入新课。
  总之,课堂教学“开场白”的方法是灵活多样的,它的设计值得我们探讨和研究。只要我们在备课中重视开场白的设计,并精心组织好每一次新课的导入,学生学习数学的兴趣一定能被激发,学习的积极性一定能增强,数学课堂教学质量也一定能提高。
其他文献
大革命时期,中国共产党领导的工农运动对推动大革命的深入发展产生了巨大作用。其中长沙作为湖南省会,是近代反帝反封建最激烈、最尖锐的地区之一。本文以大革命时期长沙工农运动为研究对象,通过对相关史料的分析,初步对其历史发生阶段的分期、特点以及局限性等问题进行探析,以期对这一时期长沙的工农运动和革命运动情况有一个初步了解。
抗日战争时期的广东妇女运动如火如荼。广东妇女积极支援和参与抗战的原因主要有三:第一,帝国主义侵略和封建压迫是广东妇女积极参与抗战的重要前提,反抗帝国主义侵略和封建压迫是其原生动力;第二,地理位置和革命传统是广东妇女积极抗战的独特因素,这些因素促使广东妇女的思想受到彻底解放,有力唤醒了她们的革命意识;第三,中国共产党的领导是广东妇女积极抗战的力量之源。没有共产党的领导,抗战的胜利是不可能的。中国共产党坚决倡导抗日民族统一战线,鼓动广大人民包括广东妇女积极参加抗战。通过回顾历史探讨广东妇女产生革命热情的原因,
枫桥和寒山寺因运河枢纽的地理区位优势,促进了张继《枫桥夜泊》的传播和接受,至清代已经发展成枫桥诗歌中的类型化地理意象。受此影响,清代诗人对枫桥和寒山寺地理环境的观察乃至想象表现出明显的“感知定向”特征,其枫桥诗歌多属于以《枫桥夜泊》中“理想”之境为参照和借鉴的“造境”,有固定的意象组合,羁旅之“愁”是共同的情感基调。对清代枫桥诗歌中类型化地理意象的讨论,能补充对传统文学史视角下《枫桥夜泊》传播和接受问题的理解。
中国经济的飞速发展以及社会长期稳定的背后,得益于中国特色社会主义制度坚持“以人为本”的基本原则与理念,并且符合中国社会实际和发展规律,能够在社会主义现代化建设进程中不断学习借鉴,这也是中国特色社会主义制度优势的彰显,今天中国创造的奇迹也坚定了14亿中国人民继续坚持中国特色社会主义制度、走中国自己发展道路的信心和理念。
大学生处于政治社会化的关键时期,研究高校政治传播方式对强化大学生主流意识形态认同具有重要的参考意义。将高校政治传播方式分为组织生活、课程教学、校园文化和学术研究四种类型,通过问卷调查和数据分析,发现组织生活、课程教学和学术研究对大学生主流意识形态认同具有显著的正向作用,而校园文化对大学生主流意识形态认同的影响具有不确定性。组织引领、课程铸魂、文化滋养、学术浸润等路径可以强化大学生对主流意识形态的认同。
高校监察体制改革,是新时代强化党对高校的领导、不断推动高校全面从严治党向纵深发展的重要举措。在国家监察体制改革深入推进的背景下,从历史、系统、实践三个维度分析高校监察机构改革显得尤为必要。结合江苏省属高校监察体制改革现状,可以发现监察工作存在人员身份和责任承担的矛盾、监察对象范围不明确、监察机构工作人员履职能力不足等问题。摆脱高校监察工作困境应着重优化以下路径:修改法律规范,赋予高校监察机构部分监察权;明确监察对象范围,达到监察全覆盖、无死角;加强队伍建设,提升综合素养。
刘禹锡在《唐故中书侍郎平章事韦公集纪》中称赞李宗闵为能文宰相,然而考查史实发现,李宗闵并不擅长文学,且屡次排挤欲提举刘禹锡之人。刘禹锡在这篇序文中称赞李宗闵,与开成年间的政局特别是与杨嗣复等人的往来密不可分,反映出他在文宗朝后期对杨嗣复等牛党人物的支持态度。
“真”在佛、道思想中指去除虚伪,追求天然,超越现象,追求本质。“幻”在佛教思想中指依附主体感官的无实在表象及真空为显现自身而存在于外的幻相。南宋《骷髅幻戏图》“真”与“幻”主要体现在绘画构图、艺术媒介和艺术形象中,表现为虚实结合、相互交融、相互依存的动态循环关系。《骷髅幻戏图》历来因内容诡异、涵义难解颇受研究者的关注。阐明《骷髅幻戏图》的“真”与“幻”的关系,不仅能深入了解该画的思想内涵及审美意蕴,而且能全面立体地展现出南宋绘画“尚理贵真”背后创作者对个体生命价值的追求及对客观现实的超越,以及不同艺术媒介
城市是国家治理的重要场域,城市治理的成效直接关系着整个社会的稳定与人民的获得感,因此,有必要以本土化的理论指导城市治理实践。梳理城市治理理论可知,在与西方理论的对话中,中国学者积极建构本土化的城市治理理论,通过回顾城市治理的中国模式与城市治理的“大”问题发现,城市治理实践者注重结合中国特有的体制和制度特点,扎根实践,致力于解决现实问题。未来中国的城市治理,应在进一步做好西方理论的引介和本土化工作的基础上,侧重理论的适应性研究,并以解决转型期城市治理面临的突出问题和矛盾为抓手,以国家治理能力和体系现代化为目
2018年在全国教育大会上,习近平总书记提出要坚持以人民为中心发展教育。作为新时代下教育思想的重要组成部分,它是以人民为中心发展思想在教育领域的具体体现,对于推进社会发展和时代进步具有重大意义。文章将进行总体分析,从马克思主义理论、历代中国共产党人实践中总结生成逻辑、从人的全面发展、公平而有质量的教育、多层次多样化教育中凝练内涵阐释、从人民需求与国家发展、人民获得感与遵循发展规律、人民受益者与发展者、国家发展阶段性与全局性的统一中探寻实践方略,为更好理解新时代下教育思想产生重要作用。