论文部分内容阅读
为预测变压器油中溶解气体的浓度,提出了混合最小二乘支持向量机回归(Mixed Least Square Support Vector Regression,M-LS-SVR)算法。该算法使用线性和非线性核函数的组合作为预测函数,利用真实数据自适应选择其混合比例因子。实验结果表明,与目前比较流行的BP神经网络方法、SVR方法和LS-SVR方法的预测结果相比,该方法具有更小的预测误差,更低的复杂性以及更好的泛化能力。