论文部分内容阅读
Numerical simulation of 3-D inner flow between Up-stream Pumping Mechanical Face Seals (UPMFS) faces was initially done by CFD software, which made the flow visualization come true. Simulation results directly discover the action of hydrodynamic lubrication, and by comparison with that of Conventional Mechanic Face Seals (CMFS), the advantage over bigger bearing capability, less friction and much less leakage are explained clearly. Otherwise there are also some different ideas and results from precedent analysis and computational research results: dynamic and static pressure profiles can be obtained respectively instead of the analytic total pressure distribution only, pressure distribution is nonlinear, while always be solved as linear, lower pressure is observed at the area of inner diameter caused by the grooves, but its possible cavitations effects to the performance of UPMFS still need further study.
Numerical simulation of 3-D inner flow between Up-stream Pumping Mechanical Face Seals (UPMFS) faces was initially done by CFD software, which made the flow visualization come true. Simulation results directly discover the action of hydrodynamic lubrication, and by comparison with that of Conventional Mechanic Face Seals (CMFS), the advantage of bigger friction bearing capability, less friction and much less leakage are clearly identif. obtained respectively instead of the analytic total pressure distribution only, while always be solved as linear, while always be solved as linear, lower pressure is observed at the area of inner diameter caused by the grooves, but its possible cavitations effects to the performance of UPMFS still need further study.