论文部分内容阅读
In the present paper, we examine the performance of an efficient type of wave-absorbing porous marine structure under the attack of regular oblique waves by using a Multi-Domain Boundary Element Method(MDBEM). The structure consists of two perforated vertical thin barriers creating what can be called a wave absorbing chamber system. The barriers are surface piercing, thereby eliminating wave overtopping. The problem of the interaction of obliquely incident linear waves upon a pair of perforated barriers is first formulated in the context of linear diffraction theory. The resulting boundary integral equation, which is matched with far-field solutions presented in terms of analytical series with unknown coefficients, as well as the appropriate boundary conditions at the free surface, seabed, and barriers, is then solved numerically using MDBEM. Dissipation of the wave energy due to the presence of the perforated barriers is represented by a simple yet effective relation in terms of the porosity parameter appropriate for thin perforated walls. The results are presented in terms of reflection and transmission coefficients. The effects of the incident wave angles, relative water depths, porosities, depths of the walls, and other major parameters of interest are explored.
In the present paper, we examine the performance of an efficient type of wave-absorbing porous marine structure under the attack of regular oblique waves by using a Multi-Domain Boundary Element Method (MDBEM). The structure consists of two perforated vertical thin barriers creating The problem of the interaction of obliquely incident linear waves upon a pair of perforated barriers is first formulated in the context of linear diffraction theory. boundary integral equation, which is matched with far-field solutions presented in terms of analytical series with unknown coefficients, as well as the appropriate boundary conditions at the free surface, seabed, and barriers, is then solved numerically using MDBEM. Dissipation of the wave energy due to the presence of the perforated barriers is represented by a simple yet effective relation in terms of the p The effects are the incident wave angles, relative water depths, porosities, depths of the walls, and the major major parameters of interest are explored.