Fe-N-C catalysts for oxygen electroreduction under external magnetic fields:Reduction of magnetic O2

来源 :能源化学 | 被引量 : 0次 | 上传用户:passionzy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
An extensive analysis of iron-nitrogen-carbon (Fe-N-C) electrocatalysts synthesis and activity is pre-sented concerning synthesis conditions such as initial Fe content,pyrolysis temperature and atmosphere(inert N2,reducing NH3,oxidizing Cl2 and their sequential combinations) and the influence of an external magnetic field on their performance in oxygen reduction reaction (ORR).Thermosetting porous polymers doped with FeCl3 were utilized as the Fe-N-C catalysts precursors.The pyrolysis temperature was varied within a 700-900 ℃ range.The temperature and atmosphere of pyrolysis strongly affect the porosity and composition of the resultant Fe-N-C catalysts,while the initial amount of Fe precursor shows much weaker impact.Pyrolysis under NH3 yields materials similar to those pyrolyzed under an inert atmo-sphere (N2).In contrast,pyrolysis under Cl2 yields carbon of peculiar character with highly disordered structure and extensive microporosity.The application of a static external magnetic field strongly enhances the ORR process (herein studied in an alkaline environment) and the enhancement correlates with the Fe content in the Fe-N-C catalysts.The Fe-N-C materials containing ferromagnetic iron phase embedded in N-doped microporous carbon constitute attractive catalysts for magnetic field-aided anion exchange membrane fuel cell technology.
其他文献
Micrometre-sized electrode materials have distinct advantages for battery applications in terms of energy density,processability,safety and cost.For the silicon monoxide anode that undergoes electro-chemical alloying reaction with Li,the Li (de)intercalat
Na2Ti3O7 has attracted much attention in the field of anode materials for Na-ion batteries thanks to its non-toxicity and very low working potential of 0.3 V vs Na0/Na+.Building a clearer picture of its forma-tion from cheap Na2CO3 and TiO2 starting mater
In this review,the history and outlook of gas-phase CO2 activation using single electrons,metal atoms,clusters (mainly metal hydride clusters),and molecules are discussed on both of the experimental and theoretical fronts.Although the development of bulk
S@pPAN has become promising cathode materials in rechargeable batteries due to its high compressed density,low E/S ratio,no polysulfide dissolution,no self-discharge,and stable cycling.However,it is a big challenge to enhance its sulfur content which dete
Design and synthesis of low bandgap (LBG) polymer donors is inevitably challenging and their process-ability from a non-halogenated solvent system remains a hurdle to overcome in the area of high-performance polymer solar cells (PSCs),Due to a high aggreg
The expedited consumption of fossil fuels has triggered broad interest in the fabrication of novel catalysts for electrochemical energy storage and conversion.Especially,single-atom catalysts (SACs) have attracted more attention owing to their high specif
Electrocatalytic oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) in acidic media are vital for the applications of renewable energy electrolyzers.However,the low mass activity of noble Pt urgently needs to be improved due to the stro
Lignocellulosic biomass photoreforming is a promising and alternative strategy for both sustainable H2 production and biomass valorization with infinite solar energy.However,harsh reaction conditions (high alkalinity or toxic organic solvents),with low bi
Two-dimensional coordination polymers (CPs) have aroused tremendous interest as electrocatalysts because the catalytic performance could be fine-tuned by their well-designed coordination layers with highly accessible and active metal sites.However,it rema
Energy sustainable development has stimulated the pursuit of an eco-friendly energy storage system.Carbon peak and neutrality targets oriented energy storage development will guide the way of further studies on batteries system.However,conventional batter