【摘 要】
:
The expedited consumption of fossil fuels has triggered broad interest in the fabrication of novel catalysts for electrochemical energy storage and conversion.Especially,single-atom catalysts (SACs) have attracted more attention owing to their high specif
【机 构】
:
Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education,S
论文部分内容阅读
The expedited consumption of fossil fuels has triggered broad interest in the fabrication of novel catalysts for electrochemical energy storage and conversion.Especially,single-atom catalysts (SACs) have attracted more attention owing to their high specific surface areas and abundant active centers.This review summarizes recent synthetic strategies to fabricate SACs with different metal loadings on various supports,and the structural influence of supports on metal loading.Then,the functions of SACs are illus-trated on electronic structure and electrocatalysis;the isolated SACs with an unsaturated coordination environment generally accelerate the electrocatalytic process and promote the selectivity.The applica-tions of SACs to some typical electrocatalytic reactions are also introduced in detail,as well as to electro-chemical energy storage and conversion systems.Finally,the challenges and the perspectives of SACs are discussed for future exploration.
其他文献
A rational design of efficient low-band-gap non-fullerene acceptors (NFAs) for high-performance organic solar cells (OSCs) remains challenging;the main constraint being the decrease in the energy level of the lowest unoccupied molecular orbitals (LUMOs) a
COx (x =1,2) and O2 chemistry play key roles in tackling global severe environmental challenges and energy issues.To date,the efficient selective electrocatalytic transformations of COx-carbon chemicals,and O2-hydrogenated products are still huge challeng
In recent years,a series of aqueous metal ion batteries (AMIBs) has been developed to improve the safety and cost-efficiency of portable electronics and electric vehicles.However,the significant gaps in energy density,power density,and cycle stability of
Metal-air batteries (MABs) have attracted considerable attention as a novel energy technology that can alleviate the severe energy crisis and environmental pollution.Two primary processes,including oxygen reduction reaction (ORR) and oxygen evolution reac
Oxygen electrode catalysts are important as inter-conversion of O2 and H2O is crucial for energy tech-nologies.However,the sluggish kinetics of oxygen reduction and evolution reactions (ORR and OER)are a hindrance to their scalable production,whereas scar
Micrometre-sized electrode materials have distinct advantages for battery applications in terms of energy density,processability,safety and cost.For the silicon monoxide anode that undergoes electro-chemical alloying reaction with Li,the Li (de)intercalat
Na2Ti3O7 has attracted much attention in the field of anode materials for Na-ion batteries thanks to its non-toxicity and very low working potential of 0.3 V vs Na0/Na+.Building a clearer picture of its forma-tion from cheap Na2CO3 and TiO2 starting mater
In this review,the history and outlook of gas-phase CO2 activation using single electrons,metal atoms,clusters (mainly metal hydride clusters),and molecules are discussed on both of the experimental and theoretical fronts.Although the development of bulk
S@pPAN has become promising cathode materials in rechargeable batteries due to its high compressed density,low E/S ratio,no polysulfide dissolution,no self-discharge,and stable cycling.However,it is a big challenge to enhance its sulfur content which dete
Design and synthesis of low bandgap (LBG) polymer donors is inevitably challenging and their process-ability from a non-halogenated solvent system remains a hurdle to overcome in the area of high-performance polymer solar cells (PSCs),Due to a high aggreg