论文部分内容阅读
Single event upset (SEU) is one of the most important origins of soft errors in aerospace applications.As technology scales down persistently, charge sharing is playing a more and more significant effect on SEU of flip-flop. Charge sharing can often bring about multi-node charge collection in storage nodes and non-storage nodes in a flip-flop. In this paper, multi-node charge collection in flip-flop data input and flip-flop clock signal is investigated by 3D TCAD mixed-mode simulations, and the simulate results indicate that single event double transient (SEDT) in flip-flop data input and flip-flop clock signal can also cause a SEU in flip-flop. This novel mechanism is called the SEDT-induced SEU, and it is also verified by heavy-ion experiment in 65 nm twin-well process. The simulation results also indicate that this mechanism is closely related with the well-structure,and the triple-well structure is more effective to increase the SEU threshold of this mechanism than twin-well structure.
Single event upset (SEU) is one of the most important origins of soft errors in aerospace applications. As technology scales down persistently, charge sharing is playing a more and more significant effect on SEU of flip-flop. Charge sharing can often bring about multi -node charge collection in storage nodes and non-storage nodes in a flip-flop. In this paper, multi-node charge collection in flip-flop data input and flip-flop clock signal is investigated by 3D TCAD mixed-mode simulations, and the simulate results that single event double transient (SEDT) in flip-flop data input and flip-flop clock signal can also cause a SEU in flip-flop. This novel mechanism is called the SEDT-induced SEU, and it is also verified by heavy-ion experiment in 65 nm twin-well process. The simulation results also indicate that this mechanism is closely related with the well-structure, and the triple-well structure is more effective to increase the SEU threshold of this mechanism than twin- well struct ure.