论文部分内容阅读
With a cross-layer design approach, a novel random access protocol is proposed in this paper, which is based on conventional slotted ALOHA (S-ALOHA) using successive interference cancellation (SIC) technique to separate collided packets and cooperative transmission to exploit the physical layer advantages. And a general theoretic analysis model is presented to obtain its throughput, which is also suitable for analyzing the performance of other protocols (such as S-ALOHA and S-ALOHA with cooperative transmission (C-ALOHA)) and is shown to be right and effective. Numerical results demonstrate that the proposed protocol can improve the maximal throughput by 190% and 132% over a Rayleigh fading channel, respectively, as compared with S-ALOHA and C-ALOHA. And the results show that our protocol can provide an effective random access method with high throughput for wireless transmission.
With a cross-layer design approach, a novel random access protocol is proposed in this paper, which is based on conventional slotted ALOHA (S-ALOHA) using successive interference cancellation (SIC) technique to separate collided packets and cooperative transmission to exploit the physical layer advantages. And a general theoretic analysis model is presented to obtain its throughput, which is also suitable for analyzing the performance of other protocols (such as S-ALOHA and S-ALOHA with cooperative transmission (C-ALOHA)) and shown Numerical results demonstrate that the proposed protocol can improve the maximal throughput by 190% and 132% over a Rayleigh fading channel, respectively, as compared with S-ALOHA and C-ALOHA. And the results show that our protocol can provide an effective random access method with high throughput for wireless transmission.