论文部分内容阅读
针对极限学习机(extreme learning machine,ELM)隐节点不确定性导致的系统不稳定,以及对大型数据计算负担过重的问题,提出了基于自适应动量优化算法(adaptive and momentum method,Ada Mom)的正则化极限学习机。算法主要思想是构造连续可微的目标函数,在梯度下降过程中计算自适应学习率,求自适应学习率与梯度乘积的指数加权平均值,通过迭代得到损失函数最小值对应的隐层输出权重矩阵。实验结果表明,在相同基准数据集的训练中,Ada Mom-ELM算法具有非常良