Multifarious roles of carbon quantum dots in heterogeneous photocatalysis

来源 :能源化学 | 被引量 : 0次 | 上传用户:xy_zhuo
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
As a new member of carbon material family,carbon quantum dots (CQDs) have attracted tremendous attentions for their potentials in the heterogeneous photocatalysis applications.Due to the unique microstructure and optical properties,the roles of CQDs played in the CQDs-based photocatalytic systems have been found to be diverse with the continuous researches in this regard.Herein,we provide a concise minireview to elaborate the multifarious roles of CQDs in photocatalysis,including photoelectron mediator and acceptor,photosensitizer,photocatalyst,reducing agent for metal salt,enhancing adsorption capacity and spectral converter.In addition,the perspectives on future research trends and challenges are proposed,which are anticipated to stimulate further research into this promising field on designing a variety of efficient CQDs-based photocatalysts for solar energy conversion.
其他文献
NiO nanoparticles with average particles size of 30 nm are synthesized using a one-pot metal-organic framework-combustion (MOF-C) technique,for use as an anode material in rechargeable lithium ion batteries (LIBs).The structural and electronic properties
A novel Ag3PO4-CaO composite photocatalyst with enhanced photocatalytic activity was synthesized and utilized for degradation of ammonia from aqueous solution under sunlight.Ag3PO4 was prepared by precipitation method,and the composite of Ag3PO4-CaO was p
The objective of this work is to study the influences of silica supports and PEG additive on the sorption performance of molecular basket sorbent (MBS) for CO2 capture consisting of polyethylenimine and one of the following supports:SBA-15 (2-D structure)
Polymer electrolyte membrane fuel cells (PEMFCs), as an energy conversion technology, have attracted extensive attention due to their high conversion efficiency, low emission, high energy density,and fast fuel charging [1,2].Pt-based catalysts have been a
The catalytic performance of Cs-substituted phosphomolybdic salts was studied for selective oxidation of isobutane.The results of activity tests revealed that 360 ℃ was the optimal reaction temperature.It was demonstrated that oxidizing sites not only too
Lithium metal is supposed to be critical material for constructing next-generation batteries due to extremely high capacity and ultralow redox potential.However,the perplexing issue of lithium dendrite growth impedes the commercial application.The initial
K-promoted iron/carbon nanotubes composite (i.e.,FeK-OX) was prepared by a redox reaction between carbon nanotubes and K2FeO4 followed by thermal treatments on a purpose as the Fischer-Tropsch catalyst for the direct conversion of syngas to lower olefins.
The possibility to adjust textural properties of ITH-and IWWzeolites by the variation of conditions (e.g.temperature,pH,duration) of acidic leaching was shown.While the growth of the temperature of acid treatment caused the increasing amount of leached Ge
As a sustainable and short-flow process,iron-catalyzed direct conversion of CO-rich syngas to lower olefins without intermediate steps,i.e.,Fischer-Tropsch-to-Olefins (FTO),has received increasing attention.However,its fundamental understanding is usually