论文部分内容阅读
[目的]探讨基于CPN神经网络集成的蛋白质二级结构预测模型的效果。[方法]借助神经网络集成方法对从36个蛋白质提取的共4000个氨基酸进行预测研究,其数据集是从HSSP数据库中提取的数据经过处理后得到的评测数据库,同时在Profile编码中引进了CPN网络算法的概念。[结果]基于CNP网络的神经网络集成预测模型可以取得很好的预测结果,把蛋白质二级结构预测的平均精度提高了17.74%。同时,所用的Profile编码和CPN网络算法在很大程度上为系统模型引入较多的生物信息和联系,而这一点对蛋白质二级结构预测非