电子膨胀阀用于电动汽车热泵系统的实验研究

来源 :农业装备与车辆工程 | 被引量 : 0次 | 上传用户:gululukuaican
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
以R134a电动汽车热泵空调系统为研究对象,在不同压缩机转速和室外环境温度下,实验研究了电子膨胀阀开度对热泵系统性能的影响规律.结果表明:在不同压缩机转速和室外温度下调节电子膨胀阀开度,压缩机吸排气特性变化趋势一致.随着电子膨胀阀开度的增加,压缩机吸气压力缓慢上升,吸气温度基本维持不变,而排气压力先增加后减小,排气温度显著降低.压缩机转速为2000 r/min和3000 r/min时的最佳EXV开度分别为40%和60%,且最佳电子膨胀阀开度与室外环境温度无关.低室外温度下将压缩机转速由2000 r/min提升至3000 r/min,同时调整EXV至最佳开度,空调箱出风温度上升2~6℃,制热量增加5%~36%,COP提高4%~11%.
其他文献
针对某款商务车型设计了一套用CO2热泵空调的整车热管理系统.通过一维CFD仿真软件Flowmaster对整车热管理系统进行建模并在NEDC工况下进行仿真分析,将CO2空调与传统制冷剂R134a以及PTC电加热进行性能对比.结果表明:在夏季仿真过程中电机温度保持在90℃ 以下,电池组温度在40℃以内,乘客舱温度在开启空调的170 s后达到设定值,随后一直稳定在25℃;冬季仿真过程中,乘客舱温度在空调开启后147 s达到设定的25℃.冬夏季仿真均符合设计要求.
为提高汽车跟车行为的安全性,提出一种基于有限状态机理论的自动紧急制动(AEB)控制策略.制定了分级预警和分级制动策略,通过碰撞时间模型(TTC)和安全距离模型确定出AEB系统的预警时机、制动时机和制动强度.在2021版C-NCAP主动安全测试场景下,通过PreScan和MATLAB/Simulink软件对提出的控制策略进行联合仿真验证.仿真结果表明:提出的AEB分级控制策略在C-NCAP各测试工况下均成功避撞,两车制动停止相对距离在1.93~3.29 m;自车实际减速度对AEB系统期望减速度跟随性好.
工程塑料代替金属材料,使汽车更轻便、更节能、更环保,同时也带来了VOC污染.介绍了汽车中使用的几种最主要塑料、VOC的来源及危害,提出了降低VOC浓度的措施,为汽车塑料零部件生产企业如何降低VOC提供借鉴,保障驾乘人员身体健康.
为了保证某单缸试验机的进气压力、温度和流量可调,以及为了实现进入气缸的空气达到所需的5.5 bar的高压,同时还要保证温度达到实验要求,专门设计了一套进气空调系统,并做了选型.在原机GT-Power一维仿真模型的基础上,比较了EGR接在稳压筒前后的优劣,并根据设计需求确定EGR接在稳压筒前.进一步确定稳压筒容积只需大于1 m3,就能保证进气压力稳定.为单缸试验机高压进气系统的研究提供参考.