论文部分内容阅读
目的最小二乘渐进迭代逼近(LSPIA)方法多以均匀参数化或弦长参数化的形式均匀地确定初始控制点,虽然取得了良好效果,但在处理复杂曲线时,迭代速度相对较慢且误差精度不一定能达到预期设定值。为了进一步提高迭代效率和误差精度,本文提出了基于关键点(局部曲率最大点和极端曲率点)的最小二乘渐进迭代逼近方法。方法首先计算所有数据点的离散曲率,筛选出局部曲率最大点;接着设定初始的曲率下限,筛选出极端曲率点;然后将关键点与均匀选取的控制点按参数顺序化,并将其作为迭代的初始控制点;最后利用LSPIA方法对数据点进行拟