论文部分内容阅读
目的利用二维斑点追踪技术(2D-STE)探讨稳定型冠状动脉性心脏病(SCAD)患者左心室功能的早期变化,评价左心室心肌纵向应变与SYNTAX评分(SS)的关系。方法入选2013年1月至2015年1月于福建医科大学附属第一医院住院的临床高度怀疑SCAD的患者148例,所有患者均在接受冠状动脉造影前进行心脏超声检查并进行离线2D-STE分析。分别计算各段峰值纵向收缩期应变率(SRs)、峰值纵向舒张早期应变率(SRe)和峰值纵向舒张晚期应变率(SRa),以左心室16段的收缩期峰值应变均值反映左心室整体收缩期峰值应变(GLS)。依据冠状动脉造影结果计算SS,依据冠状动脉血管直径狭窄是否≥50%分为狭窄性CAD组(n=116)和非狭窄性CAD组(对照组,n=32),根据SS三分位数将所有狭窄性CAD患者分为3组:低SS组(SS≤8)、中SS组(SS 8~<17)和高SS组(SS≥17)。结果对照组与狭窄性CAD组患者的左心室舒张末期内径(LVEDd)和左心室收缩末期内径(LVESd)差异无统计学意义。与对照组比较,狭窄性CAD组患者的室间隔厚度(IVST)、左心室后壁厚度(LVPWT)和左心室质量指数(LVMI)增加,且随着SS的增加逐渐加重。狭窄性CAD组患者的左心室射血分数(LVEF)、舒张早期二尖瓣口血流峰值速度(E峰)、E峰减速时间(DT)、GLS(绝对值)、SRs(绝对值)和SRe均较对照组下降,GLS(绝对值)、SRs(绝对值)和SRe随SS的增加呈下降趋势。中SS组的LVEF与对照组和低SS组差异无统计学意义[(62.5±4.3)%比(62.5±3.8)%比(62.9±3.2)%,P>0.05],但中SS组的GLS、SRs和SRe与对照组比较,差异有统计学意义[GLS:(-16.8±3.2)%比(-19.2±2.4)%;SRs:-1.02±0.30比-1.18±0.20;SRe:1.26±0.40比1.59±0.20;均P<0.05]。相关分析显示,狭窄性CAD患者的左心室GLS与SS、LVMI、低密度脂蛋白胆固醇(LDL-C)、LVEF、体质量指数(BMI)、冠状动脉病变血管数、高血压等因素相关。多因素分析显示,GLS与SS和糖尿病呈负相关,且独立于其他变量。结论狭窄性CAD患者左心室心肌纵向应变异常早于LVEF,GLS与SS独立相关。
Objective To investigate the early changes of left ventricular function in patients with stable coronary heart disease (SCAD) by 2D-STE and evaluate the relationship between left ventricular longitudinal strain and SYNTAX score (SS). Methods A total of 148 patients with highly suspected SCAD were enrolled in the First Affiliated Hospital of Fujian Medical University from January 2013 to January 2015. All patients underwent echocardiography and 2D-STE analysis before coronary angiography . The peak longitudinal systolic strain rate (SRs), peak longitudinal diastolic strain (SRe) and peak longitudinal diastolic strain rate (SRa) of each segment were calculated respectively. The average systolic peak strain of 16 segments of the left ventricle reflected the general contraction of the left ventricle Peak Strain (GLS). According to the results of coronary angiography, SS was calculated and classified into stenosis CAD group (n = 116) and non-stenosis CAD group (control group, n = 32) according to whether coronary stenosis was ≥50% All patients with stenosed CAD were divided into 3 groups: low SS group (SS≤8), middle SS group (SS8 ~ <17) and high SS group (SS≥17). Results There was no significant difference in left ventricular end-diastolic dimension (LVEDd) and left ventricular end-systolic dimension (LVESd) between the control group and the stenosed CAD group. Compared with the control group, the interventricular septal thickness (IVST), left ventricular posterior wall thickness (LVPWT) and left ventricular mass index (LVMI) increased in patients with stenosis CAD and gradually increased with the increase of SS. Left ventricular ejection fraction (LVEF), early mitral peak velocity (E peak), E peak deceleration time (DT), GLS (absolute value), SRs (absolute value) and SRe decreased compared with the control group, GLS (absolute value), SRs (absolute value) and SRe decreased with the increase of SS. There were no significant differences in LVEF between SS group and control group and low SS group (62.5 ± 4.3% vs. 62.9 ± 3.2%, P> 0.05) , SRs and SRe were significantly different from the control group [GLS: (-16.8 ± 3.2)% vs (-19.2 ± 2.4)%; SRs: -1.02 ± 0.30 vs -1.18 ± 0.20; SRe: 1.26 ± 0.40 Than 1.59 ± 0.20; all P <0.05]. Correlation analysis showed that the left ventricular GLS in patients with stenosed CAD correlated with factors such as SS, LVMI, LDL-C, LVEF, BMI, coronary artery lesion blood pressure and hypertension. Multivariate analysis showed that GLS was negatively correlated with SS and diabetes and independent of other variables. Conclusion The longitudinal strain of left ventricular myocardium in patients with stenosed CAD is earlier than that of LVEF, and GLS is independent of SS.