论文部分内容阅读
目前,模糊神经网络控制在控制领域已成为一个研究热点。把神经网络应用于模糊系统,可以解决模糊系统中的知识抽取问题;把模糊系统应用于神经网络,神经网络就不再是黑箱了,人类的知识就很容易融合到神经网络中。本文提出了一种新型的动态模糊神经网络的结构及其学习算法,该动态模糊神经网络的结构基于扩展的径向基网络。其学习算法的最大特点是参数的调整和结构的辨识同时进行,且学习速度快,可用于实时建模与控制。开发了相关的算法程序,最后针对实际案例进行了仿真分析。仿真结果表明,动态模糊神经网络具有学习速度快、系统结构紧凑、泛化能