论文部分内容阅读
本文用数值方法研究了正方形封闭边界情况下不同倾角对二维紊动自然对流的影响。在四个边界中,有一边是热边界,与此相对的另一边为冷边界,其余两边界上的温度为线性分布。当后种即温度为线性分布的边界为水平时,取倾角为零。文中所用 K-∈模式类似于朗道(Launder)和斯巴尔丁(Spalding)的模式,所解方程是质量、平均动量、平均热能守恒方程。当格拉斯荷夫(Grashof)数取6×10~6~10~8的范围里,研究了以30°~60°的一系列倾角下的情况。给出了流线、等温线、紊动粘性等值线和紊动功能等值线。在热边界上平均热传导率达最大值时倾角为30°,而与格拉斯荷夫数无关。
In this paper, the influence of different dip angles on natural convection with two-dimensional turbulence is studied numerically. Of the four borders, one is the hot border, the other is the cold border and the other two are linearly spaced. When the latter is the temperature of the linear distribution of the border is horizontal, take the inclination is zero. The K-∈ mode used in this paper is similar to that of Launder and Spalding. The equations solved are mass, mean momentum, and mean heat conservation equations. When the Grashof number is in the range of 6 × 10 ~ 6 ~ 10 ~ 8, we study the case of a series of dip angles of 30 ° ~ 60 °. The isoline, isotherm, turbulent viscosity contour and turbulence contour are given. The mean angle of thermal conductivity at the thermal boundary reached a maximum of 30 °, regardless of the Glasgow number.