论文部分内容阅读
An analytical model of gate-all-around(GAA) silicon nanowire tunneling field effect transistors(NW-TFETs) is developted based on the surface potential solutions in the channel direction and considering the band to band tunneling(BTBT) efficiency. The three-dimensional Poisson equation is solved to obtain the surface potential distributions in the partition regions along the channel direction for the NW-TFET, and a tunneling current model using Kane’s expression is developed. The validity of the developed model is shown by the good agreement between the model predictions and the TCAD simulation results.
An analytical model of gate-all-around (GAA) silicon nanowire tunneling field effect transistors (NW-TFETs) is developed based on the surface potential solutions in the channel direction and considering the band to band tunneling (BTBT) efficiency. dimensional Poisson equation is solved to obtain the surface potential distributions in the partition regions along the channel direction for the NW-TFET, and a tunneling current model using Kane’s expression is developed. The validity of the developed model is shown by the good agreement between the model predictions and the TCAD simulation results.