论文部分内容阅读
固体氧化物燃料电池(SOFC)和固体氧化物燃料电解池(SOEC)作为新一代的能源转化装置,凭借其清洁、高效的能源转化优势,非常具有技术吸引力。为了将SOFC和SOEC商业化,操作更加持久、高效和经济,中低温的运行温度成为当前国际上研究的主要方向,其中提高氧电极材料的氧还原反应/氧析出反应(ORR/OER)活性是研究的关键。本文主要阐述了原子尺度分子模拟分析和原位实验测试表征对混合离子电子导体氧电极材料中氧迁移规律和传输机理研究的重要作用,推进传统材料向新型氧电极材料和结构的发展;归纳和综述了近期热点的混合离子电子导体(MIEC)氧电极材料、相应的离子传输路径、各向异性结构及晶格动力学;介绍了当前采用的先进研究手段和方法,并重点介绍了原位X射线光电子能谱(XPS)和俄歇电子光谱(AES)探测材料的表面化学组成和结构,原位的方式可以将致密薄膜中几纳米到十几纳米的结构可视化,在原子层面上研究氧电极材料中带电缺陷的形成和迁移;并基于原子尺度的密度泛函理论(DFT)计算和近期分子动力学模拟(MD)的研究进展对传统材料和新型材料中的氧迁移机理进行解释和分析。最后,简要综述了清华大学核研院在固体氧化物池氧电极方面的研究进展。
Solid oxide fuel cells (SOFCs) and solid oxide fuel cells (SOECs), a new generation of energy conversion devices, are very attractive for technology due to their clean and efficient energy conversion benefits. In order to commercialize SOFC and SOEC, the operation is more lasting, efficient and economical. The operating temperature at low and middle temperature has become the main research direction in the world at present, in which the oxygen reduction reaction / oxygen evolution reaction (ORR / OER) activity of the oxygen electrode material is The key to research. This paper mainly expounds the important role of atomic scale molecular simulation analysis and in-situ experimental characterization on the oxygen migration and transport mechanism in the hybrid electrode materials and advances the development of new oxygen electrode materials and structures from traditional materials. Recent hot spots of MIEC oxygen electrode materials, corresponding ion transport pathways, anisotropic structures and lattice dynamics are reviewed. The current advanced research methods and methods are introduced, and the in situ X XPS and AES probe the chemical composition and structure of the surface of the material, the in-situ method can be dense film several nanometers to ten nanometers of the structure of visualization at the atomic level to study the oxygen electrode The formation and migration of charged defects in the material; and the oxygen migration mechanism in the traditional materials and new materials is explained and analyzed based on the atomic-scale density functional theory (DFT) calculation and the recent progress in molecular dynamics simulation (MD). Finally, a brief review of the research progress of the Nuclear Research Institute at Tsinghua University in the solid oxide cell oxygen electrode is given.