论文部分内容阅读
近十几年来,有关应变诱导结晶的聚合物纤维的形态结构和结晶机理做了大量的研究工作,其理论解释是基于在流动过程中的溶液或熔体的纵向流动梯度。为制得高取向的聚合物材料,提高纵向流动梯度是一种有效的途径。在工业生产上,通过高纺速(1×10~4厘米/秒)可以获得高的纵向流动梯度,而对于实验室研究,Petermann提出的熔融拉伸方法(1)是很方便的。该方法的特点是以较低的拉伸速率(4厘米/秒)在很短的流动区域内(0.5—1.0微米)获得非常高的纵向流动梯度(4×10~4/秒)和过冷速率。依此方法可以制得高度取向的聚合物薄膜。
In the past ten years, a great deal of work has been done on the morphological structure and crystallization mechanism of strain-induced crystallization of polymer fibers. The theoretical explanation is based on the longitudinal flow gradient of the solution or melt in the flowing process. To make highly oriented polymer materials, increasing the longitudinal flow gradient is an effective way. In industrial production, a high vertical flow gradient can be achieved by high spinning speeds (1 x 10-4 cm / sec), whereas for laboratory studies the melt stretching method (1) proposed by Petermann is very convenient. This method is characterized by the very high longitudinal flow gradient (4x10-4 / sec) and supercooling (4x10-4 / sec) at very low flow rates (4 cm / sec) rate. In this way, a highly oriented polymer film can be produced.