论文部分内容阅读
摘要:介绍永磁磁力偶合调速系统构成与工作原理,发展趋势及国内发展应用的状况。
关键词:永磁磁力偶合 调速 节能
中图分类号:TM35 文献标识码:A 文章编号:1007-3973(2012)010-050-02
资源紧缺是全人类所面临的难题,在相当长的一段时间内,节能减排将是我国必须持之以恒开展的一项工作。由一次能源及其他可再生能源转换而来的电能大约70%用于电动机拖动消耗,在生产实践中,对电力拖动设备进行节能降耗的研究和实践从没有间断过。90年代以来,变频器大规模的开发应用,负载设备工艺流程的改进,还有近年来各种调速设备的应用,都是伴随着节能的需要应运而生,永磁磁力偶合调速驱动器是建立在电磁涡流磁场力作用下,通过铜导体和永磁体之间的气隙实现由电动机到负载的转矩传输。该技术实现了在驱动电机和被驱动负载侧没有机械链接。其工作原理不同于滑差电机调速装置,它是靠磁力传动转矩一种技术,可以大大降低机械振动和噪音,节能效率约在10~50%之间。
1 永磁耦合驱动系统构成与工作原理
永磁磁力耦合调速驱动器主要由铜盘转子,永磁磁盘转子和控制执行机构三部分组成。铜盘转子固定在电动机轴上,永磁磁盘转子固定在负载转轴上,铜盘转子和永磁磁盘转子之间有气隙。
铜盘转子和永磁磁盘转子可以自由独立旋转,当动力侧的铜盘转子旋转时,铜转子和永磁转子产生相对运动,铜转子切割强力永磁体产生的强磁场中磁力线而产生涡电流,涡电流产生感应磁场与永磁体相互作用产生的扭矩来带动负载旋转工作。在永磁转子和铜转子间存在气隙而没有机械连接,永磁磁力耦合调速就是通过调节永磁转子与铜转子之间气隙的大小来改变传递扭矩的大小,而获得能够调节、控制 、可重复的负载转速,达到减速节能的效果。
永磁调速器PMD安装于工业系统中,可响应于过程信号以满足控制需求。
2 永磁调速节能设计原理
在风机或水泵等负载设计选用中,我们将用到以下的相似定律:
Q1/Q2 = n1/n2 (流量与转速成正比)
H1/H2 = (n1/n2)2 (压力与转速的平方成正比)
T1/T2 = (n1/n2)2 (负载扭矩与转速的平方成正比)
在现实应用当中,为了使风机或水泵等负载保证系统输出的要求,一般都根据系统最大输出能力来配备风机或水泵的容量,但实际上系统通常不是在满负荷状况下运行。为适应工况变化,不得不通过实现流量或压力的控制,来达到生产的要求。
于是,上述系统的效率€%` = 电机效率€%`1€卓刂粕璞傅男蕗%`2€追缁蛩眯蕗%`3€资渌凸艿赖男蕗%`4。
从公式中,假设€%`1 ,€%`3 和€%`4 不变,那么系统的效率就由控制设备的效率来决定。使用永磁磁力耦合调速技术通过改变气隙大小来实现流量或压力的连续可调,在电机转速没有变化的情况下,来实现风机或水泵转速的改变。而在传统的通过调节阀门或挡板的开度来实现输出流量或压力的调节中,由于电机、风机或水泵的转速都没有发生变化,从相似定律可得输入功率不会根据阀门或风门挡板开度的变化而变化。反而由于在阀门或挡板两端有很大的压差,使得风机或水泵的运行点偏离最佳效率点,而且阀门开度越小,能量的损失就越大。
根据公式P=T*€%r(功率=扭矩*转速),于是,电机输出功率:P1/P2 = (n1/n2)2
上式中,如果电机速度不变,那么负载功率就与转速的平方成正比。我们看到,当输出的流量或压力下降时,根据离心负载的相似定律,电动机的功率就会剧烈下降,这就使得用电量减少,从而节省了电能。例如,当输出流量比满负荷流量下降20%时,则输出压力只有满负荷时的38%,而电能的消耗就只有满负荷时将近一半,剔除调速装置的较小损耗,节能效果是非常显著的。
必须指出:节能效果主要取决于风机、水泵系统实际持续运行的工况,选择合理的等效工作点是系统节能设计的基点。
图2可看到,开始工作时,风机H-Q曲线与管网H-Q曲线的交点是其工作点A,而流量从Q1变化到Q2时:
(1)通过调节阀门或挡板的开度,管网或风道特性曲线由R1改变为R2,其工作点A变化到B点,其功率为OQ2BH2’所围成的面积,与原来相比,功率变化不大,但系统效率却降低不少。
(2)采用永磁磁力耦合调速时,可调整电机的转速来改变设备的性能曲线,图中n1到n2,工作点由A调到了C点,此时功率为OQ2CH2所围成的面积,可以看到其效率曲线在平移后还是处在高效区,而节能的区域十分大。
(3)节能量P=(H2’-H2)
3 永磁驱动调速技术的发展动态
我国从50年代开始这一技术的研究,当时的出发点是解决隔离转矩传动的问题,目前国内还没有从节能的高度提出规模利用及开展永磁磁力调速方面的研究和生产,磁力偶合调速对于国内而言是全新的概念,甚至在欧美德日也属于全新的技术。国内使用的产品主要是美国生产的。
4 工程实例
磁力偶合调速在国内应用很少。浙江嘉兴发电厂300 MW机组的除渣系统中配置有两台DN350-60€?离心式高压水泵,A泵和B泵交替运行,互为备用。
2007年9月,嘉兴电厂在B泵上实施了永磁耦合调速驱动技术改造,这是我国电力系统安装的第一台永磁调速驱动器,从运行效果来看,節能效益显著,设备安装容易,运行稳定。为永磁调速驱动技术的推广应用提供了有益的经验。
永磁调速驱动器相比其他其他调速技术包括高压变频调速,具有设备结构简单,故障几率小,维护成本低,使用寿命长,节能效益高,调速范围宽,可靠性高,无谐波污染、稳定性好等一系列优点,而且无物理连接,极大减少风机水泵等系统振动,减少系统维护,延长了设备使用寿命。同时可应用在恶劣的环境下,建议推广使用。国内在200KW~2 500KW之间的高压电机有使用变频调速和永磁驱动调速的成熟经验。目前3000KW以上电机还缺少使用永磁驱动调速的经验。实际上,厂用电动机大多在3 000KW以下,对于这些电机,我们可以将两种调速技术进行全面的比较,从而制订出更加合理的节能技术方案。
关键词:永磁磁力偶合 调速 节能
中图分类号:TM35 文献标识码:A 文章编号:1007-3973(2012)010-050-02
资源紧缺是全人类所面临的难题,在相当长的一段时间内,节能减排将是我国必须持之以恒开展的一项工作。由一次能源及其他可再生能源转换而来的电能大约70%用于电动机拖动消耗,在生产实践中,对电力拖动设备进行节能降耗的研究和实践从没有间断过。90年代以来,变频器大规模的开发应用,负载设备工艺流程的改进,还有近年来各种调速设备的应用,都是伴随着节能的需要应运而生,永磁磁力偶合调速驱动器是建立在电磁涡流磁场力作用下,通过铜导体和永磁体之间的气隙实现由电动机到负载的转矩传输。该技术实现了在驱动电机和被驱动负载侧没有机械链接。其工作原理不同于滑差电机调速装置,它是靠磁力传动转矩一种技术,可以大大降低机械振动和噪音,节能效率约在10~50%之间。
1 永磁耦合驱动系统构成与工作原理
永磁磁力耦合调速驱动器主要由铜盘转子,永磁磁盘转子和控制执行机构三部分组成。铜盘转子固定在电动机轴上,永磁磁盘转子固定在负载转轴上,铜盘转子和永磁磁盘转子之间有气隙。
铜盘转子和永磁磁盘转子可以自由独立旋转,当动力侧的铜盘转子旋转时,铜转子和永磁转子产生相对运动,铜转子切割强力永磁体产生的强磁场中磁力线而产生涡电流,涡电流产生感应磁场与永磁体相互作用产生的扭矩来带动负载旋转工作。在永磁转子和铜转子间存在气隙而没有机械连接,永磁磁力耦合调速就是通过调节永磁转子与铜转子之间气隙的大小来改变传递扭矩的大小,而获得能够调节、控制 、可重复的负载转速,达到减速节能的效果。
永磁调速器PMD安装于工业系统中,可响应于过程信号以满足控制需求。
2 永磁调速节能设计原理
在风机或水泵等负载设计选用中,我们将用到以下的相似定律:
Q1/Q2 = n1/n2 (流量与转速成正比)
H1/H2 = (n1/n2)2 (压力与转速的平方成正比)
T1/T2 = (n1/n2)2 (负载扭矩与转速的平方成正比)
在现实应用当中,为了使风机或水泵等负载保证系统输出的要求,一般都根据系统最大输出能力来配备风机或水泵的容量,但实际上系统通常不是在满负荷状况下运行。为适应工况变化,不得不通过实现流量或压力的控制,来达到生产的要求。
于是,上述系统的效率€%` = 电机效率€%`1€卓刂粕璞傅男蕗%`2€追缁蛩眯蕗%`3€资渌凸艿赖男蕗%`4。
从公式中,假设€%`1 ,€%`3 和€%`4 不变,那么系统的效率就由控制设备的效率来决定。使用永磁磁力耦合调速技术通过改变气隙大小来实现流量或压力的连续可调,在电机转速没有变化的情况下,来实现风机或水泵转速的改变。而在传统的通过调节阀门或挡板的开度来实现输出流量或压力的调节中,由于电机、风机或水泵的转速都没有发生变化,从相似定律可得输入功率不会根据阀门或风门挡板开度的变化而变化。反而由于在阀门或挡板两端有很大的压差,使得风机或水泵的运行点偏离最佳效率点,而且阀门开度越小,能量的损失就越大。
根据公式P=T*€%r(功率=扭矩*转速),于是,电机输出功率:P1/P2 = (n1/n2)2
上式中,如果电机速度不变,那么负载功率就与转速的平方成正比。我们看到,当输出的流量或压力下降时,根据离心负载的相似定律,电动机的功率就会剧烈下降,这就使得用电量减少,从而节省了电能。例如,当输出流量比满负荷流量下降20%时,则输出压力只有满负荷时的38%,而电能的消耗就只有满负荷时将近一半,剔除调速装置的较小损耗,节能效果是非常显著的。
必须指出:节能效果主要取决于风机、水泵系统实际持续运行的工况,选择合理的等效工作点是系统节能设计的基点。
图2可看到,开始工作时,风机H-Q曲线与管网H-Q曲线的交点是其工作点A,而流量从Q1变化到Q2时:
(1)通过调节阀门或挡板的开度,管网或风道特性曲线由R1改变为R2,其工作点A变化到B点,其功率为OQ2BH2’所围成的面积,与原来相比,功率变化不大,但系统效率却降低不少。
(2)采用永磁磁力耦合调速时,可调整电机的转速来改变设备的性能曲线,图中n1到n2,工作点由A调到了C点,此时功率为OQ2CH2所围成的面积,可以看到其效率曲线在平移后还是处在高效区,而节能的区域十分大。
(3)节能量P=(H2’-H2)
3 永磁驱动调速技术的发展动态
我国从50年代开始这一技术的研究,当时的出发点是解决隔离转矩传动的问题,目前国内还没有从节能的高度提出规模利用及开展永磁磁力调速方面的研究和生产,磁力偶合调速对于国内而言是全新的概念,甚至在欧美德日也属于全新的技术。国内使用的产品主要是美国生产的。
4 工程实例
磁力偶合调速在国内应用很少。浙江嘉兴发电厂300 MW机组的除渣系统中配置有两台DN350-60€?离心式高压水泵,A泵和B泵交替运行,互为备用。
2007年9月,嘉兴电厂在B泵上实施了永磁耦合调速驱动技术改造,这是我国电力系统安装的第一台永磁调速驱动器,从运行效果来看,節能效益显著,设备安装容易,运行稳定。为永磁调速驱动技术的推广应用提供了有益的经验。
永磁调速驱动器相比其他其他调速技术包括高压变频调速,具有设备结构简单,故障几率小,维护成本低,使用寿命长,节能效益高,调速范围宽,可靠性高,无谐波污染、稳定性好等一系列优点,而且无物理连接,极大减少风机水泵等系统振动,减少系统维护,延长了设备使用寿命。同时可应用在恶劣的环境下,建议推广使用。国内在200KW~2 500KW之间的高压电机有使用变频调速和永磁驱动调速的成熟经验。目前3000KW以上电机还缺少使用永磁驱动调速的经验。实际上,厂用电动机大多在3 000KW以下,对于这些电机,我们可以将两种调速技术进行全面的比较,从而制订出更加合理的节能技术方案。