论文部分内容阅读
针对致密储层中气水干层识别和产能预测准确率较低这一难题,提出偏最小二乘神经网络方法:用偏最小二乘方法对输入自变量集进行主成分提取预处理,消除重叠的输入信息,用可变学习速率反向传播算法(VLBP)和附加动量方法(AMOBP)构建BP储层识别和产能预测的网络模型.以陕甘宁盆地中部气田马五1储层气、水、干层识别问题为例,选用19口井分层测试的92个已知样本,在提取物性、测井和储渗特征等方面的14个特征参数后,通过偏最小二乘方法提炼得到电阻率(R11d)、声波时差(△t)、产能系数(kh)、储渗因子(Kφs)、介