论文部分内容阅读
纵观全国各地中考数学试卷,注重体现新课程理念,贴近中学数学教学实际,坚持对基础知识、基本技能以及数学思想方法的考查.试卷除保留各地区命题的基本风格与特点外,还出现了许多格调清闲、简洁明快的新思维、新亮点考题.这为新课程改革下的数学教学进一步改革指明了新的方向.本文结合教学实际谈谈自己的几点教学思考.
一、加强常规题向开放题的改造
数学开放题就是给学生以较大认知空间的题目.随着素质教育的全面推进,中考命题中出现了一批符合学生的年龄特点和认识水平,设计优美、个性独特的开放题.我们在平时的教学中,可以把一些常规题的条件、结论完整的题目改造为给出条件,先猜结论,再进行证明的形式;也可以改造给出多个条件,需要整理、筛选以后才能求解或证明的题目;还可以改造成要求运用多种解法或得出多个结论的题目.此外,将题目的条件、结论拓广,使其演变为一个发展性问题,或给出结论,再让学生探求条件等,都是使常规题变为开放题的有效方法.开放题的训练能培养学生的发散思维能力,培养学生的创新意识和能力.
二、增加学生对试题的发散猜想
猜想是由已知原理、事实,对未知现象及其规律所作出的一种假设性的命题.在我们的数学教学中,培养学生进行猜想,是激发学生学习兴趣,发展学生直觉思维,掌握探求知识方法的必要手段.我们要善于启发、积极指导、热情鼓励学生进行猜想,以真正达到启迪思维、传授知识的目的.启发学生进行猜想,作为教师,首先要点燃学生主动探索之火,我们决不能急于把自己全部的秘密都吐露出来,而要“引在前”,“引”学生观察分析,“引”学生大胆设问,“引”学生各抒己见,“引”学生充分活动,让学生去猜、去想,猜想问题的结论,猜想解题的方向,猜想由特殊到一般的可能,猜想知识间的有机联系,让学生把各种各样的想法都讲出来,成为学习的主人.为了启发学生进行猜想,我们还可创设使学生积极思维、引发猜想的意境,可提出“怎么发现这一定理的?”“解这题的方法是如何想到的?”“这些已知条件还可以与哪些知识联系起来,我们如何变化条件?”等诸如此类的问题,组织学生进行猜想、探索.还可编制一些变换结论,缺少条件的的题目,引发学生猜想的愿望和积极性.
三、促成数学知识点的有效整合
我们现有的人教版的教材内容有的是按直线式排列,有的是按螺旋式排列.如果进行数学活动的教学,教材的逻辑结构应有相应的变化.例如,关于一元一次方程应用题,中学课本里有行程问题、工程问题、等积问题,在讲解时,可用一个方程表示不同问题,使他们得到统一,只是问题形式不同,其方程形式没有什么本质差异,可一次讲完几个问题.现有的初中教材常常把一些知识点分开,使学生觉得似乎几种问题毫不相干,因为这些问题所呈现出的不同思维形式,要受小学、初中和高中学习各阶段思维不同特点的制约.因此,我们必须对教学内容有机整合、有效地设计,达到环环相扣,紧密相连,真正体现螺旋上升的网络结构原则.有效的整合有助于学生对数学知识整体性有更深的认识,促进对数学思想和方法的掌握与理解.
四、应用分层分组的教学形式
教学活动是教师的教与学生的学交互作用的过程.在教学实践中,我们以一种统一的教学方法对待具有不同特点的学生,很难获得满意的教学效果,总会有一些学生对教学方法不适应,难以达到预期的教学目的,其原因在于个体差异,个体差异表现在很多方面,其中一个方面就是学习风格的差异.在学校里,我们往往重视能适应自己教学的学生,而对那不能适应自己教学的学生缺乏关注,损伤了学生的学习信心,而且不利于他们的全面发展.分层次教学不等于分快慢班教学,而是我们每堂课都必须为全体学生着想,让学生参与到学习活动中,并使其有所收获,有所进步.课堂上多采用师与生、生与生、生与师的多面交流.因材施教,因人而异,把个别活动、小组活动和班级活动有机地结合,把全体学生带入预置的教学情境中.分层分组教学不仅培养了学生之间密切配合和积极参加的群体意识,而且让不同层次的学生都得到了训练,感受到成功的乐趣.
一、加强常规题向开放题的改造
数学开放题就是给学生以较大认知空间的题目.随着素质教育的全面推进,中考命题中出现了一批符合学生的年龄特点和认识水平,设计优美、个性独特的开放题.我们在平时的教学中,可以把一些常规题的条件、结论完整的题目改造为给出条件,先猜结论,再进行证明的形式;也可以改造给出多个条件,需要整理、筛选以后才能求解或证明的题目;还可以改造成要求运用多种解法或得出多个结论的题目.此外,将题目的条件、结论拓广,使其演变为一个发展性问题,或给出结论,再让学生探求条件等,都是使常规题变为开放题的有效方法.开放题的训练能培养学生的发散思维能力,培养学生的创新意识和能力.
二、增加学生对试题的发散猜想
猜想是由已知原理、事实,对未知现象及其规律所作出的一种假设性的命题.在我们的数学教学中,培养学生进行猜想,是激发学生学习兴趣,发展学生直觉思维,掌握探求知识方法的必要手段.我们要善于启发、积极指导、热情鼓励学生进行猜想,以真正达到启迪思维、传授知识的目的.启发学生进行猜想,作为教师,首先要点燃学生主动探索之火,我们决不能急于把自己全部的秘密都吐露出来,而要“引在前”,“引”学生观察分析,“引”学生大胆设问,“引”学生各抒己见,“引”学生充分活动,让学生去猜、去想,猜想问题的结论,猜想解题的方向,猜想由特殊到一般的可能,猜想知识间的有机联系,让学生把各种各样的想法都讲出来,成为学习的主人.为了启发学生进行猜想,我们还可创设使学生积极思维、引发猜想的意境,可提出“怎么发现这一定理的?”“解这题的方法是如何想到的?”“这些已知条件还可以与哪些知识联系起来,我们如何变化条件?”等诸如此类的问题,组织学生进行猜想、探索.还可编制一些变换结论,缺少条件的的题目,引发学生猜想的愿望和积极性.
三、促成数学知识点的有效整合
我们现有的人教版的教材内容有的是按直线式排列,有的是按螺旋式排列.如果进行数学活动的教学,教材的逻辑结构应有相应的变化.例如,关于一元一次方程应用题,中学课本里有行程问题、工程问题、等积问题,在讲解时,可用一个方程表示不同问题,使他们得到统一,只是问题形式不同,其方程形式没有什么本质差异,可一次讲完几个问题.现有的初中教材常常把一些知识点分开,使学生觉得似乎几种问题毫不相干,因为这些问题所呈现出的不同思维形式,要受小学、初中和高中学习各阶段思维不同特点的制约.因此,我们必须对教学内容有机整合、有效地设计,达到环环相扣,紧密相连,真正体现螺旋上升的网络结构原则.有效的整合有助于学生对数学知识整体性有更深的认识,促进对数学思想和方法的掌握与理解.
四、应用分层分组的教学形式
教学活动是教师的教与学生的学交互作用的过程.在教学实践中,我们以一种统一的教学方法对待具有不同特点的学生,很难获得满意的教学效果,总会有一些学生对教学方法不适应,难以达到预期的教学目的,其原因在于个体差异,个体差异表现在很多方面,其中一个方面就是学习风格的差异.在学校里,我们往往重视能适应自己教学的学生,而对那不能适应自己教学的学生缺乏关注,损伤了学生的学习信心,而且不利于他们的全面发展.分层次教学不等于分快慢班教学,而是我们每堂课都必须为全体学生着想,让学生参与到学习活动中,并使其有所收获,有所进步.课堂上多采用师与生、生与生、生与师的多面交流.因材施教,因人而异,把个别活动、小组活动和班级活动有机地结合,把全体学生带入预置的教学情境中.分层分组教学不仅培养了学生之间密切配合和积极参加的群体意识,而且让不同层次的学生都得到了训练,感受到成功的乐趣.