论文部分内容阅读
针对模拟电路故障诊断的神经网络存在结构规模较大的问题,提出一种基于小波一神经网络的模拟电路故障诊断方法。该法采用冲激响应来获取模拟电路的故障信号,采用小波变换作为模拟电路故障信号的预处理器,利用Haar小波分层次分解提取故障信号特征,该信号特征经主元分析和数据标称化后,作为用于故障诊断的神经网络的输入。基于该法故障诊断的基本原理,对一实例电路进行故障划类、小波函数及故障特征选择,给出计算故障特征的仿真编程及故障类别的识别方法。该法大大减少用于故障诊断的神经网络的输入数目,简化它的结构和减少其训练处理的时间