论文部分内容阅读
本文旨在研究基于深度网络模型的茶叶嫩芽识别方法,根据茶叶的品级和质量要求,把茶叶嫩芽分为一芽一叶和一芽两叶,因为茶叶的生长姿态千差万别,所以又在茶叶嫩芽识别模型中加入关于遮挡情况的分类。选用了基于VGG-16、ResNet-50和ResNet-101特征提取网络的Faster R-CNN深度网络模型分别对茶叶嫩芽数据样本进行训练,同时,该方法与三种相同特征提取网络的SSD深度网络模型进行对比,实验结果表明,基于VGG-16特征提取网络的Faster R-CNN深度网络模型的识别效果较好,得出茶叶嫩芽