论文部分内容阅读
A new method based on the Transport Capacity Fraction (TCF) concept is proposed to compute the fractional transport rates for nonuniform sediment mixtures in sand-bed channels. The TCF concept is derived from the understanding that the measurements and predictions of bed-material load are more accurate and reliable than the measurements and predictions of fractional loads. First the bed-material load is computed using an appropriate equation, then the fractional transport rates are determined by distributing the bed-material load into size groups through a transport capacity distribution function. For the computation of bed-material loads, the Ackers and White, Engelund and Hansen, and Yang equations are used in this study. Two new transport capacity distribution functions are developed for flows in sand-bed channels. The new expressions presented in this paper account for the sheltering and exposure effects that exist in mixtures. Comparisons with measured data show that the proposed method can signifi
A new method based on the Transport Capacity Fraction (TCF) concept is proposed to calculate the fractional transport rates for nonuniform sediment mixtures in sand-bed channels. The TCF concept is derived from the understanding that the measurements and predictions of bed-material load are more accurate and reliable than the measurements and predictions of fractional loads. First the bed-material load is computed using an appropriate equation, then the fractional transport rates are determined by distributing the bed-material load into size groups through a transport capacity distribution function. For the computation of bed-material loads, the Ackers and White, Engelund and Hansen, and Yang equations are used in this study. Two new transport capacity distribution functions are developed for flows in sand-bed channels. account for the sheltering and exposure effects that exist in mixtures. Comparisons with measured data show that the proposed method can signifi