【摘 要】
:
本文主要通过样条函数方法研究与之相关的离散几何学和组合学问题.在离散几何学方面主要考虑超立方体切面(cube slicing)体积和混合体(mixed volume)的样条表示,利用B样条函数的几何解释,将超立方体切面问题转化为与之等价的样条函数问题,分别给出Laplace和P′olya关于超立方体切面定理的样条证明,将样条函数与混合体积联系起来,给出一类混合体积的样条解释.利用这种解释可以得到一
论文部分内容阅读
本文主要通过样条函数方法研究与之相关的离散几何学和组合学问题.在离散几何学方面主要考虑超立方体切面(cube slicing)体积和混合体(mixed volume)的样条表示,利用B样条函数的几何解释,将超立方体切面问题转化为与之等价的样条函数问题,分别给出Laplace和P′olya关于超立方体切面定理的样条证明,将样条函数与混合体积联系起来,给出一类混合体积的样条解释.利用这种解释可以得到一类具有对数凹性质的组合序列,从而部分地回答了Schmidt和Simion所提出的关于混合体积的公开问题.
其他文献
本文研究连续窗口Fourier变换的反演公式.与经典的积分重构公式不同,本文证明当窗函数满足合适的条件时,窗口Fourier变换的反演公式可以表示为一个离散级数.此外,本文还研究这一重构级数的逐点收敛及其在Lebesgue空间的收敛性.对于L2空间,本文给出重构级数收敛的充分必要条件.
本文首先讨论热方程初值问题的解在Hardy、BMO(bounded mean oscillation)和Besov型空间中的估计.然后本文结合Coifmann-Lions-Meyer-Semmes在Hardy空间中的补偿紧性结果,给出Navier-Stokes方程整体弱解的二阶导数的一些端点估计.
本文介绍一类带有非对称正核的完全非线性混合可积微分算子并研究其解的正则性.具体地,本文建立关于该算子非局部A-B-P(Alexandroff-Bakelman-Pucci)估计、Harnack不等式以及解的Hlder和C1,α正则性.
令δδt+(-△)2+V2为Rn+1(n 5)上的高阶抛物型Schrdinger算子,其中非负位势V与时间t无关且属于逆Hlder类Bq1(Rn)(q1>n/2).本文得到与高阶抛物型Schrdinger算子相关的Riesz变换▽2(δδt+(-△)2+V2)-12的Lp(Rn+1)估计.
假设n和m是两个正整数,P(x,D)是定义在维数为n的紧致无边流形M上的一般m阶椭圆自伴微分算子.在一定条件下,本文主要证明微分算子P(x,D)的预解式的一致Lp-Lq估计,其中n>m 2,(p,q)在Sobolev线上并满足1p-1q=m n,p 2(n+1)n+3,q 2(n+1)n-1.本文的一个核心引理是建立曲面Σx={ξ∈T*x(M):p(x,ξ)=1}上测度的Fourier变换衰减估计
对任意给定的正整数m,Z+×{1,...,m}的任意一个有限子集S,定义一般化的多线性分数次积分算子的交换子Iα,→b,S(f)(x)=integral from n=(Rn)m to ∞[∏(i,j)∈S(bi(x)-bi(yj)(|x-y1|+···+|x-ym|)mn-α]multiply from j=1 to m[fj(yj)d→y ],其中d→y=dy1···dym.此框架下的交换子包
利用解析性估计和方程非线性项的特殊结构,本文证明了三维各向异Navier-Stokes方程对一类在垂直方向慢变的大初值的整体适定性.
本文考虑Euclid空间Rn中环B1\B∈上的调和函数u,其中∈<<1.本文证明当1
A new a priori error estimate of nonconforming finite element methods HU Jun,MA Rui&SHI ZhongCi Abstract This paper is devoted to a new error analysis of nonconforming finite element methods.Compared
近40年来,几何设计与计算这一数学、计算机科学与机械制造的交叉学科得到迅速发展,以此为重要基础产生的计算机辅助设计技术使得航空、船舶和汽车等制造领域的设计过程发生了革命性变革.近年来,三维数字几何继图像、声音和视频之后,成为几何设计与计算学科的前沿课题,并有望成为下一代新型数字媒体的重要理论支撑.