论文部分内容阅读
研究网络入侵准确检测问题。针对入侵检测系统存在的比较高的漏报率以及高的误报率,同时也存在入侵检测的数据存在维数大、冗余度高等缺陷。为了保证网络的安全防护技术的实时性和有效性,结合领域粗糙集和BP神经网络算法的优点,提出了一种新的基于领域粗糙集理论和BP神经网络算法的入侵检测算法。首先在粗糙集理论的基础上引入领域概念,减少信息的丢失,利用领域粗糙集理论进行数据的约简,将简化的数据集作为BP神经网络输入数据,可简化BP神经网络的结构,同时缩短了样本训练时间,有效提高了BP神经网络分类正确率。在Matla