论文部分内容阅读
针对传统算法难以克服天气多变等外界因素的干扰,且识别率低的不足,研究了智能监控中如何有效提高车牌识别率的问题。根据车牌字符图像的特点,提出了一种基于局部HOG特征的稀疏表达车牌识别算法。方法采用字符图像5个ROI的归一化HOG特征为基础建立特征向量,构建字典,并利用稀疏表达思想求解字符图像特征的稀疏系数,进而完成车牌识别。实验结果表明,与传统改进的BP神经网络法相比,该方法不仅有很高的正确识别率,而且对于有部分缺失的字符图像也有很高识别可靠性,具有很大的应用价值。