论文部分内容阅读
对大块非晶合金Zr4 1Ti14 Ni10 Cu12 .5Be2 2 .5(摩尔分数 )的比热容和导热系数进行了测量 ,发现在 15~ 35 0℃范围内 ,其比热容和导热系数随温度的增高而增大 ,二者的变化范围分别为 0 .386~ 0 .485kJ/ (kg·℃ )和 4.80~ 7.74W/ (m·℃ )。在深过冷区域的比热容和导热系数分别是 0 .5 9kJ/ (kg·℃ )和 9.5 5W / (m·℃ )。在对此合金的比热容和导热的系数测量和分析的基础上 ,利用这些参数对其冷却过程进行了数值模拟 ,并用楔形试样进行了验证。利用数值模拟可以预测Zr4 1Ti14 Ni10 Cu12 .5Be2 2 .5合金在水冷铜模铸造过程中的冷却速度 ,并依此判定是否能够获得非晶态铸件。
The specific heat capacity and thermal conductivity of bulk amorphous alloy Zr4 1Ti14 Ni10 Cu12 .5Be2 2.5 (molar fraction) were measured and found that the specific heat capacity and thermal conductivity increased with the increase of temperature in the range of 15-35 0 ℃ , Respectively, with the range of 0.386 ~ 0.485 kJ / (kg · ℃) and 4.80 ~ 7.74 W / (m · ℃) respectively. The specific heat capacities and thermal conductivities in the deep subcooling zone were 0.59 kJ / (kg · ℃) and 9.55 W / (m · ℃), respectively. Based on the measurement and analysis of the specific heat capacity and thermal conductivity of the alloy, the cooling process was numerically simulated by these parameters and verified by the wedge-shaped specimen. The numerical simulation can be used to predict the cooling rate of Zr4 1Ti14 Ni10 Cu12 .5Be2 2 .5 alloy during water-cooled copper mold casting and determine whether amorphous castings can be obtained.