论文部分内容阅读
Type 1 diabetes is the result of a selective destruction of insulin-producing β cells in pancreatic islets by autoreactive T cells. Depletion of autoreactive T cell through apoptosis may be a potential strategy for the prevention of autoimmune diabetes. Simultaneous stimulation of Fas-mediated pathway and blockade of costimulation by a CTLA4-FasL fusion protein has been reported to lead to substantial inhibition of mixed lymphocyte reaction and enhanced in vitro apoptosis of peripheral lymphocytes. To test the feasibility of CTLA4-FasL-based gene therapy to prevent autoimmune diabetes, we developed recombinant adenovirus containing human CTLA4-FasL gene (AdCTLA4-FasL). A single injection of 2×10~8 plaque forming units (PFU) of AdCTLA4-FasL via tail vein dramatically reduced the incidence of autoimmune diabetes in mice induced by multiple low doses of streptozotocin. AdCTLA4-FasL administration maintained islet insulin content, significantly increased apoptosis of pancreatic lymphocytes, quantitatively
Type 1 diabetes is the result of a selective destruction of insulin-producing β cells in pancreatic islets by autoreactive T cells. Depletion of autoreactive T cell through apoptosis may be a potential strategy for the prevention of autoimmune diabetes. Simultaneous stimulation of Fas-mediated pathway and blockade of costimulation by a CTLA4-FasL fusion protein has been reported to lead to substantial inhibition of mixed lymphocyte reaction and enhanced in vitro apoptosis of peripheral lymphocytes. To test the feasibility of CTLA4-FasL-based gene therapy to prevent autoimmune diabetes, we A single injection of 2 × 10 -8 plaque forming units (PFU) of via CTCT4-FasL via tail vein dramatically reduced the incidence of autoimmune diabetes in mice induced by multiple low doses of streptozotocin. AdCTLA4-FasL administration maintained islet insulin content, significantly increased apoptosis of pancreatic lymphocyt es, quantitatively