论文部分内容阅读
在现实生活中很多应用都包含了对不平衡数据集的分类.由于不平衡数据集中多数类与稀有类的数量相差较大,所以大多数分类算法都不能够很好地对稀有类样本进行分类,而通常稀有类才是我们首要关心的,这就给不平衡数据的分类提出了挑战,为了更好地处理不平衡数据集的分类问题,本文提出了一种以基分类器的ROC曲线下面积(AUC面积)为分类权重的AUCBoost分类算法.