论文部分内容阅读
通过添加Universum数据,引入了与分类样本无关的样本,并借此引入了先验域信息,构建了添加Universum数据的最小二乘投影双支持向量机(ULSPTSVM).此外,还将方法扩展到递归学习方法,用于进一步提高ULSPTSVM的分类性能.实验表明,ULSPTSVM方法可以直接减少带有Universum数据的双支持向量机(USVM)方法的训练时间,而且在多数情况下ULSPTSVM方法的测试精度优于最小二乘投影双支持向量机(LSPTSVM)方法的测试精度.