论文部分内容阅读
研究环形拓扑的网络化极大–加系统在添加捷径后周期长度和周期时间的特性.给出系统添加k条起始点相同的捷径后周期长度为1的概率的一个下界表达式和周期时间不变的一个充分必要条件,发现两个维数分别为素数与其方幂的系统添加捷径后周期长度为1的概率的下界是一致的.讨论系统添加起始点不相同的捷径的若干特殊情形,给出系统添加k条互不相交的捷径后周期长度为1的概率的一个下界表达式.所用的代数与组合方法具有构造性.由此给出检验系统添加k条起始点相同的捷径后周期时间保持不变的算法,并证明这一算法是多项式算法.同时还给出一个关于周期长度的数值例子.
It is very important to study the network topology of the ring topology - adding the cycle length and cycle time of the system after adding shortcuts.We give a lower bound expression and cycle time of the probability that the cycle length is 1 after the system adds k shortcuts with the same starting point A necessary and sufficient condition is found, and we find that the two bounds of the prime numbers are the same as the lower bounds of the probabilities that the shortest period length is 1 after adding shortcuts to the system of primes. Some special cases are discussed where the system adds shortcuts of different starting points to The system adds k disjoint shortcuts followed by the probability of a length of the lower bound of 1. The algebra and the combination of the method used is constructive.This gives the test system to add k starting point the same short cut cycle time Maintain the same algorithm, and prove that the algorithm is a polynomial algorithm. Also gives a numerical example of the length of the cycle.