论文部分内容阅读
在许多机器学习的任务中,人们常常使用有标签的数据,但是现实中无标签的数据是大量存在的.提出一种基于半监督学习理论的数据降维方法,为能够发现局部的流形结构,算法寻找一个能够最小化类内距离,同时最大化类间距离的投影,同时在最优化过程中借助无标签数据作为调节因子.多个数据库上测试的结果验证了算法的有效性.图2,参13.