论文部分内容阅读
传统的神经网络算法在电价变化剧烈的情况下,精度较低并且所耗费的时间较长,难以满足电力市场发展的需求。为解决该问题,提出了一种基于回声状态网络(ESN)的短期电价预测方法。所提方法介绍了基于回声状态网络的预测原理,提出了电力市场短期电价的预测机制,包括参数选取、采样数据预处理和ESN训练及预测过程;并分别采用回声状态网络和反向传播算法(BP)神经网络进行短期电价预测。经过仿真验证,所提出的基于回声状态网络的电价预测具有较好的准确率和可行性。