论文部分内容阅读
利用小样本声纹作为训练集训练卷积神经网络(CNN)时,网络不能达到较好的收敛状态,从而导致识别率较低。为此,提出一种新的声纹识别方法。利用深度CNN提取潜在的声纹特征,在CNN训练过程中采用基于凸透镜成像原理的图像增多算法解决小样本训练样本不足的问题,并在卷积过程中引入快速批量归一化(FBN)方法以提高网络收敛速度、缩短训练时间。在包含630人的TIMIT语音数据库中进行训练、验证和测试,结果表明,FBN-Alexnet网络比Alexnet网络训练时间缩短48.2%,与GMM、GMM-UBM及GMM