论文部分内容阅读
为了提高数据挖掘的聚类准确度,提出了一种基于菌群优化的K均值(K-means)聚类算法。采用K均值算法建立数据聚类模型。根据聚类类别数设定多个聚类中心坐标。设定所属类别距离阈值,然后计算待聚类点和所有中心点距离来划分该聚类点的类别。根据参与聚类各节点和各自中心点的距离值建立适应度函数。引入菌群优化算法对K均值聚类过程进行优化。通过细菌的多次驱散、复制和趋化操作,不断提高数据聚类的适应度,直到达到最大操作次数或者最低聚类精确度阈值,获得稳定的数据聚类挖掘算法。实验证明,通过合理设置驱散和趋化次数,微调菌群算