论文部分内容阅读
本文定义了一类用于实值离散信号处理的实值离散正交变换。这类正交变换以 Walsh-Hadamard 变换开始,到 Hartley 变换结束。这类变换的有效快速算法由变换矩阵分解为稀疏矩阵的积得到。本文给出了这类变换的基本性质。
This paper defines a class of real-valued discrete orthogonal transform for real-valued discrete signal processing. Such orthogonal transformation starts with the Walsh-Hadamard transformation and ends with the Hartley transformation. An efficient and fast algorithm for such transformations is obtained by factoring the transformation matrix into a product of sparse matrices. This paper presents the basic properties of such transformations.