论文部分内容阅读
本文对平滑多信号分类(MUSIC)法从数据矩阵的角度进行了分析,将MUSIC法与数据矩阵的奇异值分解(DMD)法的出发点统一起来。提出了一种基于前后向数据矩阵分解的方法,并与MU-SIC法及DMD法进行了比较。计算机模拟表明这种方法的可行性与优越性是明显的。
In this paper, we analyze the MUSIC method from the perspective of data matrix and unify the starting point of the MUSIC method and the data matrix singular value decomposition (DMD) method. A method based on forward-backward data matrix decomposition is proposed and compared with MU-SIC method and DMD method. Computer simulation shows that the feasibility and superiority of this method are obvious.